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Ladder Rung vs. Siderail Hand Grip Strategies
by Ralph L. Barnett” and Peter J. Poczynok™

ABSTRACT

When climbers lose their foothold on fixed, straight or extension ladders, the incipient
fall may be arrested by gripping either the ladder rungs or siderails. Grasping the rungs
provides an interference or power grip; squeezing the siderails provides a friction grip
which is the primary focus of this paper. The falling scenario begins with free fall that
lasts for the duration of the simple reaction time. Free fall is then decelerated by
contravening friction forces derived from hand grip forces rapidly applied to the
siderails. Using hand grip/time histories for various individuals, their fall distances were
calculated for bare and gloved hands on a vertical steel fixed ladder. Sometimes the
candidates could not arrest their falls; often their fall distance was too great to prevent
ground impact. Under some circumstances, the vertical motion was brought under
timely control. Although arich literature is available for characterizing grip strength, data
reflecting grip/time profiles does not appear. Grip strength/time diagrams were
measured for fourteen test subjects.

INTRODUCTION

When climbing a fixed, extension or straight ladder, the climber may elect to grasp either the
siderails or the rungs. A review of the literature relative to “How to Climb a Ladder” reveals
that one of the articles recommends holding onto the siderails [Ref: 1], two advocate holding
onto the rungs [Refs: 2, 3] and the eleven remaining papers admonish the climbers to hold
onto the ladder without specifying a handhold preference [Refs: 4-14]. None ofthe referenced
articles attempt to technically establish which strategy, siderail support or rung support, is
better. Such a comparison is the primary goal of this paper.

Under ordinary ladder climbing conditions, users are usually supported by three or four
appendages. To prevent falling, the hands must supply a small horizontal resistance to
prevent the user from rotating backward off the rungs. It is not necessary for the hands
to grip either the rungs or the siderails; the fingers need only provide a “hook”. When
normal conditions prevail, the two climbing protocols provide equivalent safety. It is only
when there is a complete loss of foothold that radical differences between the protocols
may be distinguished. The siderail strategy cannot reestablish equilibrium without
securing a tight grip on the siderails; the rung strategy need only maintain the hook-like
geometry of the fingers to arrest the fall.
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Two central concepts are used in this paper to analyze the
“siderail” climbing strategy. First, classical equations of
motion are formulated to provide fall height, H; i.e., the
vertical fall distance from the instant foothold is lost until the
motion is arrested. Second, a “best case scenario” is always
assumed for the siderail climbing protocol. For example, the
dominant hand grip strength will be taken for both hands.
Assumptions of this kind always lead to predictions for H that
are less than the actual fall heights.

Hand Grip/Time Relationship

The literature abounds with grip strength studies that
reflect the following factors: gender, age and handedness
[Refs: 15-18, 23, 30, 31, 45, 56]; time of day [Refs: 23, 24,
31, 38, 46, 56]; body position [Refs: 36, 56]; altitude [Ref:
49]; gloves [Refs: 20, 25, 43, 50, 52, 54]; arm support [Ref:
23]; grip size [Refs: 20, 24, 27, 42, 53] oxygen [Ref: 48];
temperature [Refs: 26, 40, 50, 58, 60]; fatigue [Refs: 19, 30,
31, 32, 55]; diet [Ref: 47]; training [Refs: 28, 31, 37, 44];
height and weight [Refs: 15, 22, 29, 33, 34, 35, 39, 41, 42];
wrist and forearm position [Refs: 21, 42, 57, 59]; and
smoking [Ref: 51]. None of the studies consider the time
history of the grip force application. The grip/time history
directly effects the retarding force acting on a falling climber
who is grasping the siderails.
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Figure 1 - Grip/Time Diagram -Test Subject 1

Grip/time relationships were measured for fourteen
candidates using the protocol outlined in Appendix A.
Figure 1 is a typical grip/time diagram which is bounded by
a bilinear curve; the initial portion is called the onset curve
and the horizontal portion is the maximum grip strength
curve. The intersection of the two curves defines the onset
time for achieving the maximum grip strength. The fictitious
bilinear curve underestimates the actual time for achieving
maximum grip strength; it provides a constant maximum
grip strength throughout a longer period than actually
experienced in reality. Thus, the bilinear bounding curve
overestimates a climber’s ability to decelerate his or her
body during a fall.

2

Friction

When a climber uses the siderails to arrest a fall on a
vertical fixed ladder, each hand produces a gripping force G
ontwo surfaces. If the coefficient of sliding friction between
the siderail and the hand is represented by u, the total drag
resistance D resisting the fall is:

D=4Gu, Eq. 1

Using the test setup depicted in Fig. 2, the room
temperature sliding friction was measured for each of the
fourteen test subjects in the grip strength testing program.
Candidates rested their hands on a table with their paims
facing upward; a Chatillon digital force gauge was fastened
to a mild steel angle and the 5.71 pound assembly was
dragged over their palms with a standard “slip meter” power
winch. A tripod mounted camcorder recorded the drag
resistance at each of seven stations one inch apart. These
drag forces and their associated coefficients of sliding
friction are tabulated in Tables B-1 through B-14 in Appendix
B for the fourteen test candidates. The coefficient of sliding
friction is defined as the Drag Force divided by the Normal
Force acting on the hands, i.e., u = Drag Force + (5.71 Ibs).
Tables B-15 through B-23 reflect the results of drag tests
conducted using various types of gloves.

Camcorder

Slipmaster
Winch

42"
Iron Angle

Digital Force
Gauge Affixed
To Iron Angle

Figure 2 - Sliding Friction Test Setup




The following equipment was used in the test program:
a) Carbon Steel Angle
Cross section: 1-1/2 x 1-1/2 x 1/8 inches
Length: 42-1/4 inches

b) Power Winch

Brand: Whiteley Industries

Model: HPS-3

Pull Speed: 3.5 inches/minute
c) Chatillon Digital Force Gauge

Model: DRC 100

Serial: M002027

Capacity: 100 Ibs

Increments: 0.1 Ibs

Fall Height - Siderail Strategy

Under the influence of gravity, a climber’s loss of foothold
results in a falling excursion that can be characterized using
Newton’s Second Law of Motion, i.e., a particle’s acceleration
is proportional to the impressed forces and inversely proportional
toits mass. Using this law, there are three natural ranges where the
downward motion may be studied; free fall, increasing grip
resistance and maximum constant grip strength. Atthe beginning
of each range, the clock will be set at zero and the symbol £ will
represent the time in that range. The overall time will be
represented by the term T.

During the initial phase of a fall, sensory receptors are
stimulated and after a time interval called the simple
reaction time, ¢ , [Ref: 61] the climber’s hands will begin to
counteract the fall by tightening their grip on the siderails.
Referring to the free-body diagram shown in Fig. 3, the
equation of motion and the boundary conditions become
respectively,

Eqg. 2

Eq. 3

. dx
where g is the acceleration due to gravity and x = —d—
t

When these equations are solved we obtain the fall height H,
and the velocity x; at the time 7 = ¢ ; thus,

H,

1
x(1,) =8t Eq. 4

2

& = )'c(tr) = gt, Eq.5

AN

Y

W (climber’s weight)

Figure 3 - Free-Body Diagram: 0 ST <1,

After a time ¢_has elapsed, the hands begin to grasp the
siderails with a linearly increasing intensity corresponding to
the onset curve represented in Fig. 1. This linear portion of
the grip/time diagram terminates at the onset time, 7,, which
is shown as the abscissa of the intersection of the two
bounding curves. It is convenient to study the second range
of motioninthetimeinterval £ <T <¢,. Afree-body diagram
reflecting the prevailing conditions in the second range is
depicted in Fig. 4a where the drag force D given by Eq. 1 has
the time history shown in Fig. 4b. The maximum grip
strength is represented by the term G ___and the climber’s
weight by W. Thus, the equation of motion and the boundary
conditions at the beginning of phase two are:

.. 4u G, t
— _g| —FsTmax ) 7
S Eany

Eq. 6
Ar: t=0,y=0 Eq. 7a
t=0,y=x(t)=gt, Eq. 7b
D (Drag)
QG e R S S L .
AAMMMNNNNNNNNNNN '
!
D i
-, E
0 1 (time) t,i
W
a) Free-Body Diagram b) Drag/Time History

Figure 4 - Free-Body Diagram: t ST <1,



Solving these equations we obtain the fall distance H,inthe
second range and the velocity y, at the time ¢, at the end of
the second range:

2 2;u’s

gty — 86, ma"t +gtt, E

1
2 W £: 8
S o -~

»=yt)= g[tr + to(l ”W ﬂ

In the third and final range of motion, the maximum grip
strength of the climber has been achieved which produces
a constant drag resistance of 4uG_ . This case is
represented by the free-body diagram shown in Fig. 5. The
equation of motion and the appropriate boundary conditions
at the beginning of the range are:

X
i

)’(to) =

Eqg. 9

__ g[4usGmax _ 1}

W Eqg. 10
At: t=0, z=0 Eq. 11a
4 N 2:usGmax
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Eq. 11b
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Figure 5 - Free-Body Diagram: t + t, <T

These equations define the following solutions:

1 o, 4uG, ) ( 2u.G )
=] -——"ma L oflf +£{]= s~ max
< zg( W g|:, 0 W

Eq.12

. 4u G, ) ( 2u.G )J
=of| ] -5 max | 4ol g | ] =28 Tmax
¢ g( w g[’ 0 W

Eq.13

The maximum fall in the third range, H,, occurs when the
climber’s velocity Z becomes zero. The assocsated time, z_,
is found by setting Eq. 13 equal to zero; hence,

[r, - r[,[l - 72MSG“‘“ H
W -

[ =

k [@_s(_;mﬁ o 1} Eq. 14
w
Substituting Eq. 14 for ¢ in Eq. 12 gives,
2 2
[t, +1, (1 - 7“;:’;"’” H
Hy =at,) =7 ( B.Gis 1) Eq. 15
w

The total fall height of the climber, H, is the sum of the fall
heights in the three ranges; thus,

H=H +H,+H, Eq. 16
1 , [1 2( 4u G, j
H=—gt:+|—gt;| 1 ————max | 4 o1 ¢
2gr |:2g0 3W grO
112G ]
+l W | Eq.17
28 (4#;0.;.&_1)
w
or
H=2gitl1+| % (1 4qu)+
2 t 3w
Eq. 18
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[

t, 4u.G,.. PG ]J F
W

Equation 18 is valid whenever the quantity within the square
brackets is non-negative. A negative value indicates that the
motion was arrested during the second phase while the
climber was building up to his maximum grip G_. . Clearly, if
the maximum drag resistance 4uG, is Iess than the
climber’s weight, the fall will never be arrested. The velocity
of the climber, given by Eq. 13, can never go to zero.

Using a simple reaction time t= 0.2 seconds, the fall
height A of Test Subject 1 may be calculated using Eq. 18.
From Fig. 1 we obtain his weight, W = 200 Ibs, his
maximum grip, G_,_=119Ibs, and his onset time, t,=0.25
seconds. Table B-1 provides his coefficient of sliding
friction, 4 = 0.72. Thus,



H= -;—(32.2)(0.2)2 {1 + (
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_4(0.72)119
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)+

9411,

Eqa.19

Using the data provided in Appendixes A and B, the fall
height was computed for each test subject and the results

are tabulated in Table I

This table shows that four

candidates cannot check their falls, two others fall 5 and 7
feet and the remainder fall less than 4 feet. The fall heights
were also computed for each test subject when they wore
nine different types of gloves. These findings are displayed
in Table Il where we observe that over 60% of the falls are
critical (over seven feet).

There is an inverse relationship between the fall height A
and the coefficient of sliding friction u_which is portrayed in
Fig. 6 for test subject 2. This curve is asymptotic to the
vertical line u = WA4G__). Friction coefficients to the right
of this line will cause test subject 2 to stop falling; values to
the left of the line lead to unchecked falling.
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Figure 6 - H vs. p_: Test Subject 2

Table | - Fall Heights (¢t =0.2 seconds)

Test Onset Time Weight Max.Grip Sliding Friction 4G max Fall Height
Subject t, (sec.) W (Ibs) G nay (IbS) 7 S TTA H (it.)

1(M) 0.25 200 119 0.72 1.71 3.94 ft.
2(M) 0.226 205 83 0.63 1.02 79.28 ft.
3(M) 0.142 157 83 0.86 1.82 2.58 ft.
4(M) 0.107 250 113 0.70 1.27 4.91 ft.
5(M) 0.120 155 84 0.83 1.80 2.42 ft.
6(M) 0.140 126 72 0.75 1.71 2.77 ft.
7(M) 0.119 195 110 0.73 1.65 2.73 ft.
8(M) 0.070 184 102 0.65 1.44 2.89 ft.
o(M) 0.142 250 49 0.59 0.46 oo
10(M) 0.162 180 85 0.80 1.51 3.71 ft.
11(F) 0.160 150 31 0.67 0.55 oo
12(F) 0.144 140 52 0.82 1.22 6.61 ft.
13(F) 0.171 110 39 0.67 0.95 oo
14(F) 0.122 190 71 1.02 1.52 3.16 ft.




Table Il - Fall Heights With Gloves (feet)

Glove Type
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2 o oo o oo oo 368.45 24.40 7.88 5.05
3 o o0 9.48 5.55 5.23 4.95 413 3.02 2.47
4 o 0 0 13.22 11.07 9.57 6.37 3.65 2.71
5 o oo 7.45 4.68 4.44 423 3.59 2.68 2.22
6 ©0 42.23 6.15 4.30 4.11 3.95 3.44 2.67 2.25
7 0 71.54 6.02 412 3.94 3.78 3.27 2.52 2.12
8 o0 0 5.39 3.57 3.40 3.25 2.80 2.13 1.79
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13 oo o 0 ) o o oo 15.53 6.27
14 o o oo 0 o o oo 8.34 4.39

Rung Climbing Strategy

Climbing a fixed vertical ladder using a “rung grasping”
strategy gives rise to a number of important observations:

1.

A small horizontal inward acting force component
must always be present to prevent a climber from
rotating backward off of the ladder. This force is
supplied by one or both hands.

To provide the required horizontal stabilization
force, the climber’s fingers need only maintain a
“hook-like” geometry. No squeezing is necessary;
however, it is acceptable.

Gravitational forces are resisted by the legs and by
one or both hands. Force sharing among the
appendages is constantly and abruptly changing
which causes the climber to maintain a substantial
“hook-like” grip but not a maximum power grip.

4. Loss of foothold causes a vertical downward
translation of the climber without rotation away from
the ladder. Both hands will always remain close to
the plane containing the ladder rungs.

5. Ifthereis aloss of foothold and the hands offer some
counterforce to falling, the climber will fall a shorter
distance than he would in free fall, i.e., less than 7.73
inches as calculated from Eq. 4 using ¢ = 0.2
seconds.

6. Atleast one ofthe arms holding onto a rung will not be
straightened out by a fall of only 7.73 inches. This
implies that at least one hand will be protected by the
shock attenuating property of a bent arm.

7. Ifthe power grip usedin the normal ascent or descent
of a ladder is capable of supporting the weight of a
climber for one second, the rung grasping strategy
will protect the climber during a loss of foothold.



If the second hand is free at the time the foothold is
lost, after the passage of 0.2 seconds it may be
inserted four inches into the plane of the rungs in an
attempt to grab a rung. Under ideal conditions, the
hand can move inward at the hand speed constant,
v,= 63 inches/second [Refs: 62, 63, 64, 65, 66]. The
time required to reach four inches is,

t = distance + v, = 4/63 = 0.0635 seconds

At that time, the climber would have been falling for ¢
= 0.2 + 0.0635 = 0.2635 seconds. The downward
speed and descent of the free hand at r = 0.2635
seconds is given by Egs. 5 and 4, respectively, as
8.48 ft/sec and 13.41 inches. The impact speed
between the hand and a rung may be greater than
8.48 ft/sec; it cannot be lower. It is possible for the
second hand to aid in a fall arrest scenario, but it
cannot be relied on given such high closure speeds
and the uncertainty of the rung catching dynamics.

If a fall is checked by one hand, the other may easily
reach four or five rungs when attempting to
reestablish a normal equilibrium configuration.

CONCLUSION AND OBSERVATIONS

1.

For the siderail climbing strategy, all of the fall height
calculations underestimate the actual fall heights that
will be experienced during a loss of foothold. Some
of the conservative assumptions reflected in the
calculations include:

a. The grip strength of the non-dominant hand
was assumed to be equal to that of the
dominant hand.

b. The gripping surfaces of the ladder siderails
were assumed to be as efficient as the grip
provided by the Smedley Dynamometer.

c. The grip/time relationships were assumed to
follow the bilinear bounding curves.

d. The climbing hand strength was taken as the
non-fatigued strength measured in the
laboratory.

e. It was assumed that the maximum grip
strength would not decrease when the hand
slid down the siderail.

The fall heights calculated for bare hands are
tabulated in Table |. Twenty-nine percent of the
test subjects experienced uncontrolied falls; 7%
suffered a critical fall (7 to 14 feet) and the
remaining 64% were able to limit their falls to less

10.

11.

than five feet. Thus, under unattainable, ideal
conditions, a full 36% of the climbers would be
seriously injured during a loss of foothold.
Furthermore, it seems likely that in real world
excursions, another 21% of the falls would be
critical.

Loss of foothold calculations using gloved hands
are exhibited in Table Il. Fifty-two percent of the
entries show uncontrolled falls; another 10% are
critical. In real fall scenarios, another 12% of the
entries will probably become critical.

The maximum grip strength of a gloved hand is less
than that of a corresponding bare hand [Refs: 20,
43, 50, 52, 54]. Cochran [Ref: 25] indicates a 7.3%
decrease for cotton gloves and a 16.8% decrease
for leather and cotton gloves. Accordingly, the fall
heights displayed in Table Il would be greater than
shown since they were all calculated using grip
tests conducted with bare hands.

The siderail grasping strategy does not deal
effectively with a loss of foothold.

The rung grasping strategy will prevent climbers
from falling after a loss of foothold if the power grip
used in ordinary ascent and descent will resist their
weight for about one second. The dangling arm
and legs can reestablish a new purchase on the
ladder in one second.

One bent arm will always be exerting an upward
force on arung during the onset of a fall. Downward
motion is always restrained even during the simple
reaction time; the power grip is always active; and
the bent arm prevents impact loading of the hand.

It is assumed that the community of users of
straight, extension and fixed ladders are capable of
dangling from a rung with only one hand for one
second.

The fourteen test subjects used in this study were
arbitrarily selected; each could hang from a fixed
ladder rung using one arm.

It should be noted that grip tests are never limited
by fingers losing their grasp on the test device
handle or trigger. The resistance of a “hook-like”
finger geometry is always greater than the
corresponding grip strength.

if a hand is not in contact with a rung at the onset of
a fall, the ability to grab a rung is delayed by the
time required to reach the rung and the simple
reaction time. This delay time, in conjunction with
a rung spacing of 12 inches, implies that the first
rung encountered by a falling hand occurs after a
drop of 13.41 to 25.41 inches. This corresponds to

7



12.

a hand/rung closure speed of 8.49 to 11.35 ft/sec.
These speeds are 62% to 116% greater than the
hand speed constant; they are too fast to be relied
upon for fall protection.

To achieve their actual maximum grip strength, the
average time required by the fourteen test subjects
was 0.349 seconds with a standard deviation of
0.093 seconds. Their times ranged from 0.209 to
0.541 seconds. It should be noted that the test
protocol required the candidates to squeeze the
dynamometer as quickly as they could.

APPENDIX A

Fourteen candidates, ten males and four females, were
tested to establish their grip/time relationships. Their ages
ranged from 20 to 60 years; their occupations included:
technician, mechanics, secretaries, engineers, librarians
and college students. The testing program reflected the
following protocol:

1.

A Smedley type adjustable spring dynamometer,
as illustrated in Fig. A-1, was used to measure grip
strength in pounds. The grip size setting was
maintained at two inches.

The dynamometer was mounted on a column with
its handle in a vertical orientation to reflect the
attitude of a fixed ladder siderail.

The dynamometer was mounted at the shoulder
height of each candidate as depicted in Fig. A-2.

A digital camcorder was focused on the
dynamometer dial. Frames were recorded at a time
interval of 1/30th second throughout the test
duration.

Candidates were instructed to begin the test by
lightly grasping the dynamometer handle.

Candidates were told that they could commence
squeezing the dynamometer at their discretion.

Candidates were asked to squeeze the
dynamometer as fast as they could, as if startled.

The video recording was terminated when the

- candidate achieved his or her maximum grip.

Several days prior to the testing program,
candidates were instructed in the operation of the
dynamometer and allowed to practice with the
instrument.

Figures A-3 through A-15 record the grip/time

relationships of candidates 2 through 14. The height,
weight, shoulder height, gender and age of test
subjects appear in their grip/time diagrams.

¢

-5

4

Figure A-1 - Smedley Type Adjustable Spring
Dynamometer

Dynamometer
(Clamped to Column)

Shoulder
Height

Figure A-2 - Grip/Time Test Setup
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Figure A-8: Grip/Time Diagram (Test Subject 7)
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Figure A-11: Grip/Time Diagram (Test Subject 10)
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APPENDIX B

This appendix displays tabulations of the sliding
coefficient of friction between various surfaces and a
carbon steel bar that is typical of the type of siderail material
used in most fixed vertical ladders. The surfaces include
the palms of fourteen men and women and nine pairs of

work gloves.

Table B-1 Coefficient of Sliding Friction - Test Subject 1

Table B-3 Coefficient of Sliding Friction - Test Subject 3

Station Drag Force (Ibs) | Coeff. Sliding Friction

1 4.8 0.84
2 5.2 0.91
3 5.0 0.88
4 4.9 0.86
5 5.1 0.89
6 47 0.82
7 4.8 0.84

Average Coefficient: 0.86

Table B-4 Coefficient of Sliding Friction - Test Subject 4

Station Drag Force (Ibs) | Coeff. Sliding Friction

1 4.3 0.75
2 3.9 0.68
3 4.0 0.70
4 4.1 0.72
5 3.9 0.68
6 4.0 0.70
7 3.8 0.67

Average Coefficient: 0.70

Table B-5 Coefficient of Sliding Friction - Test Subject 5

Table B-2 Coefficient of Sliding Friction - Test Subject 2

Station Drag Force (Ibs) | Coeff. Sliding Friction Station Drag Force (Ibs) | Coeff. Sliding Friction
—— —

1 4.0 0.70 1 48 0.84
2 4.0 0.70 2 47 0.82
3 4.2 0.74 3 4.8 0.84
4 3.9 0.68 4 47 0.82
5 4.1 0.72 5 48 0.84
6 4.3 0.75 6 4.8 0.84
7 4.2 0.74 7 47 0.82

Average Coefficient: 0.72 Average Coefficient: 0.83

Table B-6 Coefficient of Sliding Friction - Test Subject 6

Station Drag Force (Ibs) | Coeff. Sliding Friction Station Drag Force (lbs) | Coeff. Sliding Friction
——— e - | | ——— —

1 3.6 0.63 1 4.2 0.74
2 3.7 0.65 2 4.7 0.82
3 3.7 0.65 3 4.4 0.77
4 3.6 0.63 4 4.2 0.74
5 3.6 0.63 5 4.7 0.82
6 3.6 0.63 6 4.0 0.70
7 3.5 0.61 7 3.9 0.68

Average Coefficient: 0.63 Average Coefficient: 0.75
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Table B-7 Coefficient of Sliding Friction - Test Subject 7

Table B-11 Coefficient of Sliding Friction - Test Subject 11

Table B-8 Coefficient of Sliding Friction - Test Subject 8

Station | Drag Force (Ibs) | Coeff. Sliding Friction Station Drag Force (Ibs) | Coeff. Sliding Friction
— — f—— — —_—

1 4.2 0.74 1 4.0 0.70

2 4.3 0.75 2 3.8 0.67

3 3.7 0.65 3 3.8 0.67

4 4.3 0.75 4 3.7 0.65

5 4.3 0.75 5 3.8 0.67

6 4.2 0.74 6 3.7 0.65

7 4.2 0.74 7 3.7 0.65

Average Coefficient: 0.73 Average Coefficient: 0.67

Table B-12 Coefficient of Sliding Friction - Test Subject 12

Table B-9 Coefficient of Sliding Friction - Test Subject 9

Station Drag Force (Ibs) | Coeff. Sliding Friction Station Drag Force (Ibs) | Coeff. Sliding Friction
———— — — — —— —

1 3.7 0.65 1 47 0.82
2 4.0 0.70 2 5.3 0.93
3 35 0.61 3 4.6 0.81
4 3.8 0.67 4 4.2 0.74
5 3.8 0.67 5 5.1 0.89
6 3.5 0.61 6 4.1 0.72
7 3.8 0.67 7 4.9 0.86

Average Coefficient: 0.65 Average Coefficient: 0.82

Table B-13 Coefficient of Sliding Friction - Test Subject 13

Table B-10 Coefficient of Sliding Friction - Test Subject 10

Station Drag Force (Ibs) | Coeff. Sliding Friction Station Drag Force (Ibs) | Coeff. Sliding Friction
—— — — ——

1 3.4 0.60 1 3.8 0.67
2 3.5 0.61 2 3.8 0.67
3 3.9 0.68 3 3.7 0.65
4 3.1 0.54 4 4.0 0.70
5 3.5 0.61 5 3.8 0.67
6 3.3 0.58 6 3.6 0.63
7 2.9 0.51 7 3.9 0.68

Average Coefficient: 0.59 Average Coefficient: 0.67

Table B-14 Coefficient of Sliding Friction - Test Subject 14

12

Station Drag Force (Ibs) | Coeff. Sliding Friction Station Drag Force (Ibs) | Coeff. Sliding Friction

————— — — —

1 4.3 0.75 1 6.0 1.05

2 4.5 0.79 2 5.9 1.04

3 4.6 0.81 3 6.0 1.05

4 4.5 0.79 4 6.0 1.05

5 4.6 0.81 5 57 1.00

6 4.6 0.81 6 5.5 0.96

7 4.6 0.81 7 5.5 0.96
Average Coefficient; 0.80 Average Coefficient: 1.02




Table B-15 Coefficient of Sliding Friction -

Table B-19 Coefficient of Sliding Friction-

All Cotton Gloves Black Leather Gloves
Station Drag Force (Ibs) | Coeff. Sliding Friction Station Drag Force (lbs) | Coeff. Sliding Friction
— = ———] —— —

1 3.7 0.65 1 2.6 0.46
2 3.6 0.63 2 2.6 0.46
3 35 0.61 3 2.5 0.44
4 3.4 0.60 4 2.5 0.44
5 3.3 0.58 5 2.5 0.44
6 3.2 0.56 6 2.5 0.44
7 3.2 0.56 7 2.5 0.44

Average Coefficient: 0.60 Average Coefficient: 0.45

Table B-16 Coefficient of Sliding Friction-

Table B-20 Coefficient of Sliding Friction-

Tan Leather Work Gloves Excessively Worn Tan Leather Work Gloves
Station Drag Force (lbs) | Coeff. Sliding Friction Station Drag Force (Ibs) [ Coeff. Sliding Friction

1 3.8 0.67 1 3.8 0.67
2 3.7 0.65 2 37 0.65
3 3.6 0.63 3 3.6 0.63
4 3.5 0.61 4 3.6 0.63
5 3.4 0.60 5 3.4 0.60
6 3.3 0.58 6 3.3 0.58
7 3.1 0.54 7 3.3 0.58

Average Coefficient: 0.61 Average Coefficient: 0.62

Table B-17 Coefficient of Sliding Friction-
Knit Gloves With Rubber Cross Beaded Palm

Table B-21 Coefficient of Sliding Friction-
Cloth Gardening Gloves With Rubber Dotted Palm

Station Drag Force (ibs) | Coeff. Sliding Friction Station Drag Force (lbs) [ Coeff. Sliding Friction

—_— — — —

1 5.8 1.02 1 46 0.81

2 5.1 0.89 2 4.5 0.79

3 5.0 0.88 3 4.4 0.77

4 5.1 0.89 4 4.5 0.79

5 5.0 0.88 5 4.3 0.75

6 4.9 0.86 6 4.3 0.75

7 4.7 0.82 7 42 0.74
Average Coefficient: 0.89 Average Coefficient: 0.77

Table B-18 Coefficient of Sliding Friction-
Canvas Gloves With Rubber Dotted Palm

Table B-22 Coefficient of Sliding Friction-
Felt Covered Rubber Gloves

Station Drag Force (Ibs) | Coeff. Sliding Friction Station Drag Force (Ibs) [ Coeff. Sliding Friction
— — -————— —1 =

1 3.8 0.67 1 3.2 0.56
2 3.9 0.68 2 2.3 0.40
3 3.8 0.67 3 2.5 0.44
4 3.7 0.65 4 25 0.44
5 37 0.65 5 2.3 0.40
6 3.7 0.65 6 2.3 0.40
7 3.6 0.63 7 23 0.40

Average Coefficient: 0.66 Average Coefficient: 0.43
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Table B-23 Coefficient of Sliding Friction-
Cotton Work Gloves With Leather Palms

Station Drag Force (Ibs) | Coeff. Sliding Friction
m— —

1 3.2 0.56
2 3.2 0.56
3 3.1 0.54
4 3.1 0.54
5 3.1 0.54
6 3.0 0.53
7 3.0 0.53

Average Coefficient: 0.54
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E INFORMATION SERVICES

A Customized Research Service

Triodyne Inc.’s Safety Information Center has become one of the largest
safety libraries in the world. As such, we offer our research capabilities to
companies and individuals on an as-needed basis through our Information
Services program. This service makes available experienced engineering
and scientific researchers who hold advanced degrees in technical, infor-
mation and library science disciplines and are skilled in research tech-
niques, information analysis and telephone query.

Through Information Services, we offer online database searches,
customized research, document delivery and telephone surveys. We also
draw on our extensive collection of current and retrospective resources and

our contacts for published and unpublished documents. Examples of recent
research are:
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* How much noise does a race car generate?

* Whatis the complaint history of safety latches on booster axle assemblies?
* What are the safety options for stand-up electric forklifts?
* What is the history of proximity warning devices on cranes?

* Are there requirements for covering exposed heating pipes and radiators
in residences?

e What are the dimensions of a regulation basketball court?

* What are the industry standards for audible backup alarms on over-the-
road trucks?
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Research strategies are designed to answer each unique question. First,
we analyze your information requirements. Then we respond with feasibil-
ity, costs, time frame and output. Following your approval, research begins.

Triodyne Inc.’s Information Services program offers a viable option to
attorneys, scientists, academics, manufacturers, government agencies,
trade associations, engineering societies, experts and others who do not
have access to a dedicated, full-time research service. Our fees are

competitive and provided on a per-project basis. There is no charge for

estimates. We offertimely turnaround and rush service is available. Search
results are delivered by mail, fax or courier.

To order or obtain more information call:

(847) 677-4730
FAX (847) 647-2047
FAX (847) 647-0473

or EMAIL us at
infoserv@triodyne.com




