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"Slip and Fall" Theory-Extreme Order Statistics 

Ralph .Lipsey Barnett 

Mechanical and Aerospace Engineering, 
Illinois Institute of Technology, Chicago, USA 

Triodyne Inc., Niles, IL, USA 

Classical "slip and fall" analysis was reformulated in this paper to account for 
the stochastic nature of friction. As it turned out, the new theory, arising from 
this analysis, was a precise statement of the distribution function for the 
smallest value among n independent observations. This made it possible to 
invoke an important result from the asymptotic theory of extreme order 
statistics that reduced the theory to a simple and elegant relationship among 
the probability of slipping, the critical friction criterion, the distance traveled 
by the walker, and the average, spread and asymmetry of the distribution of 
friction coefficients. The new theory reveals that short walks lead to fewer 
falls; low friction floors are sometimes better than high friction ones. 

slip and fall extreme value statistics human locomotion friction 
slipperiness Weibull reliability 

1. INTRODUCTION 

The 1974 edition of Accident Facts, published by the National Safety 
Council, indicated that in the USA 8,000,000 falls occurred in the home 
resulting in 9,600 deaths and 1,600,000 disabling injuries'. In 1999, falling 
in the home once again killed 9,600; only motor vehicles caused more 
deaths than falling. The total number of deaths attributed to falls was 17,100 
and the trend over the past 15 years is unfortunately increasing. Because of 
the seriousness of the "slip and fall" problem a great many technologists 
have focused on its elusive solution. Concentrating only on slips, there is 

Correspondence and requests for offprints should be sent to Ralph Lipsey Barnett, 5950 
W. Touhy Avenue, Niles, IL 60714, USA. E-mail:<cheryl@triodyne.com>. 

Death from accident is death that occurs within one year of the accident. Disabling 
injltry is an injury causing permanent disability or any degree of temporary total disability. 
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general agreement that they may be abated by controlling the friction 
coefficients of floors. 

Human locomotion involves acceleration during start-up, slowdown, 
steady movement, and maneuvers. These accelerations are associated with 
tangential forces transferred from a walker's footwear to the walking 
surface. To accomplish desired ambulation the tangential forces must be 
resisted by ground reaction forces. On uncontaminated dry floors, ground 
reaction forces are developed through friction. 

In 1495 Leonardo da'vinci deduced two basic laws of friction: 

1. The friction force is dependent on the force pressing bodies together; 
2. The friction force is independent of the apparent area of contact. 

He found that the friction force was a fraction of the normal force, that is, 

where F-friction force (tangential), p-coefficient of friction (constant), 
N-normal component of the contact force between the contacting bodies. 

Leonard Euler, in i725, established that the coefficient of friction was 
different for static conditions, p,, and for dynamic or kinetic conditions, pk. 
He found that usually 

p s  > I l k .  

The static coefficient of friction is the ratio of horizontal force to normal 
force required to initiate sliding between two solid bodies. In 1875, Charles 
A. Coulomb discovered that kinetic friction, pk, is nearly independent of the 
sliding speed; this is often referred to as the third law of friction. These 
historical facts have been carefully chronicled by Duncan Dowson (1979) in 
his History of Tribology. 

-. - The required resistance for ambulation is measured with a force-plate. 
This is an instrumented walking surface that records the time history of 
contact forces impressed by walking candidates during various locomotion 
exercises, for example, straight walking or turning. Typical time histories 
are displayed in Figure 1, which has been generated from two sources by 
Gronqvist, Roine, Jarvinen, and Korhonen (1989). The top of the figure 
shows gait phases developed by Murray (1967) in normal level walking for 
one step with the right foot. The force-time diagrams in Figure 1 were 
obtained by Perkins (1978) using a three-axis force-plate manufactured by 
Kistler Instruments A.G. of Switzerland (Type 9261 A). Curves are shown 
for the horizontal force component H, the vertical force component V, and 
for their ratio HN. The H N  ratio allows the limit of safety to be 
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determined. The horizontal component of force applied by the foot to the 
floor is opposed by the friction between the two. At the point of slipping 
H = pV. Thus, if the ratio HN is not as great as p, slipping will not occur. 

right foot in stance phase 

left foot in stance phase 

foot in swing phase 

heel contact toe - off 

Time After Heel Contact (s) 

Figure 1. Contact forces during straight walking (after Gronqvist, Roine, Jarvinen, & Korho- 
nen, 1989). Notes. Gait phases in normal level walking with typical horizontal force (4, vertical force 
(V), and their ratio (HN) for one step (right foot). Criticxi1 from the viewpoint of slipping are the heel 
contact (especially peaks 3 and 4) and toe-off (peaks 5 and 6). &Newtons. 
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The maximum value of H N  attained in a step will give the value below 
which p, must not drop if the floor is to be safe. 

In a comprehensive study by Harper, Warlow, and Clarke (1961), 
maximum values of H N  were determined on a level surface for men and 
women during straight walks and turns. Their force-plate measurements of 
HN, which are summarized in Table 1, represent 87 sets of data for men 
and 37 sets for women. Using statistical inference, Harper et al. estimated the 
HN value at the 99.9999 percentile level for straight walking, HN = 0.36. 
This implies that only one in a million men will exceed this value. If there 
were such a thing as a uniform friction floor where the floor-footwear 
friction coefficient was everywhere constant, at say p = 0.36, then only one 
man in a million would slip on this surface. Unfortunately, the problem of 
slipping is more complicated because friction coefficients between material 
couples are stochastic. This paper deals with this fact. 

TABLE 1. Maximum H N  (after Harper, Warlow, & Clarke, 1961) 

Turning 

Straight Walking Left Foot Right Foot 

Statistical Properties Men Women Men Women Men Women 

Mean (50 percentile) 
Standard deviation 
99.9999 percentile 

2. CRITICAL FRICTION CRITERION 

The classical formulation of the slip and fall problem may be stated as no slip 
-. - will occur if the coefficient of friction p between the walking surface and the 

footwear contact area exceeds some critical friction criterion, h, that is, 
p > pc ... no slip. (1) 

Equation 1 is deceptively simple. Almost every decision regarding the 
application of this inequality is surrounded by uncertainty; consider, in turn, 
the left and right sides: 

Coefficient of Friction (Foohuear/Walking Surface): p 

1. Should p be taken as static or dynamic? For decades a transatlantic 
controversy has endured over this question; U.S. investigators have 
embraced the static coefficient of friction whereas the UK and European 
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experts have maintained that the kinetic friction coefficient is more 
significant. 

2. Should a floor's slipperiness be judged under dry, wet, or oily condi- 
tions? To measure ,u under wet or oily conditions a testing device should 
be selected that simultaneously applies the horizontal and vertical force 
components at the floorlfootwear interface. This avoids erroneously high 
slip resistance values due to "sticktion;" this term was coined to express 
the adherence or build-up of suction at the test interface when the 
vertical force V is applied before H. 

3. What footwear material should be used to test a floor; indeed, should an 
entire shoe be tested? Consider the following ASTM (American Society 
for Testing and Materials) standards: 

ASTM C1028-89 (ASTM, 1989a) adopts Neolite, 
ASTM D2047-88 (ASTM, 1988a) specifies leather conforming to 
Federal Specification KK-L-165C. Also a standard rubber may be used 
if it satisfies ASTM Dl630 (ASTM, 1983a), 
ASTM F609-89 (ASTM, 1989b) allows for actual footwear samples. 

4. What slip-resistance measurement device should be used? There are as 
many as 40 kinds of tribometry appliances that have been developed in 
the past 70 years for laboratory and field applications under wet or dry 
conditions (Adler & Pierman, 1979; ASTM, 1983b, 1983c, 1983d, 1988b; 
Balance, Morgan, & Senior, 1985; Brungraber, 1976, 1977; Irvine, 1976; 
Jung & Schenk, 1990; Majcherczyk, 1977; Pfauth & Miller, 1976; 
Redfern & Bidanda, 1994; Reed & Mahon, 1977). The readings obtained 
among these devices are not consistent and they are not accurate when 
run head to head with force-plates. Most machines, on the other hand, 
show repeatability; both static and dynamic coefficients of friction lie 
within 10% of the mean (Andres & Chaffin, 1985). 

5. How is the friction coefficient reported? When a particular test is 
executed, the result is a value of ,us or pk. When the slipperiness of 
a floor is measured using a testing protocol, the average coefficient .of 
friction is recorded, that is, ;i& or pk. The following test protocols are 
examples: 

ASTM C1028-89 (ASTM, 1989a), Horizontal Dynamometer Pull-Meter 
Method; 12 readings are averaged from four pulls perpendicular to the 
previous pull on each of three surface areas or three test specimens. 
ASTM D2047-88 (ASTM, 1988a), James Machine; requires that the 
arithmetic average of 12 static coefficients of friction obtained from 
three panels be reported. 
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ASTM Proposed Test method for "Dynamic Coefficient of Friction of 
Polish-Coated Floor Surfaces as Measured by the NBS-Sigler Pendu- 
lum Impact Tester (ASTM, 1983~); requires the arithmetic average of 
24 readings of the dynamic coefficient of friction obtained on three 
specimens. 
ASTM Proposed Test Method for Static and Dynamic Coefficient of 
Friction of Polish-Coated Floor Surfaces as Measured by the Topaka 
Slip Tester (ASTM, 1983d); requires the arithmetic average of nine 
readings of static or dynamic friction coefficients taken from three 
specimens. 

Classic floor slipperiness is always described as the average of multiple 
friction coefficient readings, that is, A or pk. For example, a high friction 
floor has a high average friction coefficient. In the present paper, friction 
coefficients are not only characterized by their average; but by their 
scatter and asymmetry as well. 

6 .  Measuring friction: 

Every testing device has a protocol specified by the manufacturer or 
by associated standards such as those promulgated by ASTM or UL 
(Underwriters Laboratory). 
Seemingly minor things can have a significant effect on slipmeter 
readings; temperature, humidity, test foot material, test foot preparation, 
floor material, floor preparation, and the amount of time the two 
materials are in contact prior to attempting a test run. The temperature 
and humidity must be reported with the average friction coefficient for 
a number of different testing machines when ASTM procedures are 
adopted, for example, ASTM C1028-89 (ASTM, 1989a) and ASTM 

-. - D2047-88 (ASTM, 1988a). 

Critical Friction Coefficient: p, 

1. The critical friction criterion pc is often established by legislative fiat. 
For example, 

Australian-New Zealand Standard (Standards Australia and Standards 
New Zealand, 1993) 
Wet or Dry Horizontal Surfaces: When tested with the Pendulum Friction 
Tester (Wet) or the Floor Friction Tester (Dry) a pedestrian surface shall 
have a mean coefficient of friction of not less than 0.4 and no specimen 
in a 'sample (usually five specimens) shall be less than 0.35. 
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Americans with Disabilities Act (ADA; Department of Justice, 2000) 
Accessible Routes: & 2 ps = 0.6 
Ramps: pc 2 ps = 0.8 
Occupational Safety and Health Administration (OSHA, 2000): 
Ground and Floor Surfaces: & 2 ps = 0.5. 

It should be noted that no methods for determining the friction coeffi- 
cients are specified by the ADA or OSHA. 

2, For any particular tribometry device p can be correlated with actual slipping 
experience and from these statistical data an acceptable pc may be chosen. 

3. A minimum functional & may be derived from locomotion analysis 
involving force-plates. A value judgement must be made regarding an 
acceptable number of slips; from this a certain percentile H N  may be 
selected as pc. 

4. A safety factor may be applied to the average IVV obtained from 
force-plate studies to account for, among other things, variations in the 
coefficient of friction measurement. The resulting pc is sort of a hybrid 
of science driven by an experience factor. 

5. The critical friction pc criterion may be arbitrarily taken as b = ps = 0.5. 
This ubiquitous static friction coefficient enjoys a rich history dating 
back to 1945 and the James Machine of the Underwriters Laboratories 
("Bucknell University F-13 workshop," 1992). 

Given these various methods of determining p and establishing b ,  ' 

one can hardly take the position that falling below & necessarily leads to 
a slip or a slip and fall. Nevertheless, for shorthand purposes we shall 
define a slip i s  a violation of Equation 1. 

3. REFORMULATION OF THE SLIP AND FALL PROBLEM 

For a specific footwear material we may use one of the available tribometry 
machines to measure the coefficient of friction at various locations on 
a homogenous floor. The resulting set of data is called a statistical sample, 
which, in the usual way, may be presented as a histogram or as a cumulative 
distribution function such as that shown in Figure 2. 

The term F@) is the probability that a random value of p, M, is less than 
or equal to p: F@) = P(M I p). Physically we know that p cannot be less than 
zero; for a particular combination of materials it may never be less than b, 
which we shall call the zero probability friction. The right hand side of the 
curve is shown to approach the value F(p) = 1 asymptotically. As a practical 
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Figure 2. Cumulative distribution function: Coefficient of friction. 

matter p seldom exceeds unity; however, there is no theoretical reason 
precluding very large values. The development of friction resistance is 
related to the shape of the interface asperities. One can visualize intermesh- 
ing rigid square-tooth gear racks that produce sliding resistance without the 
imposition of normal forces. Macroscopically, child resistant bottle caps 
often use such a design for the clockwise or tightening direction. 

Based on Equation 1, slipping proceeds whenever p l pc. Consider 
taking a walk of n steps on a surface whose friction is characterized by the 
distribution function F(p).  During the first step the probability of slipping is 
F W )  as indicated in Figure 2. On the other hand, the probability of surviving 
or not slipping is [l - FCu,)]. The survival of the second step is completely 
independent of the first step and has the same survival probability, 
[I - F(,uc)]. Consequently, the probability of simultaneous survival of the 

-.- first and second steps is the product [l - F(pc)] [l - F(pc)]. If we designate 
Fw&) as the probability of slipping during a walk of n steps, [l - Fw(pc)] is 
the probability of surviving the walk. This is equal to the probability of 
simultaneously surviving n steps, [I - F(pC)ln. Thus, 

With reference to the Statistics of Extremes (Gumbel, 1958), Equation 3 
turns out to be the definition of the exact distribution of the smallest value 
among n independent observations. We can now take advantage of some 85 
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years of mathematical inquiry in the field of extreme value statistics. In 
particular, the precise form of F(pc) may be obtained from the asymptotic 
theory of extreme order statistics and the observations that the friction 
coefficients are independent and identically distributed; they are continuously 
distributed and achieve a zero probability at p = 0 or p = p,, and a walk of 
n steps follows the "weakest-link principle" in the sense that its resistance 
to slip cannot exceed the lowest friction coefficient encountered. F01,) is 
a Weibull Distribution; that is, 

where pz, p,,, and m are statistical parameters. This result was first 
established in 1928 by Fisher and Tippett (1928); it is extensively explored 
in a remarkable book by Galarnbos (1978). 

Substitution of Equation 4 into Equation 3 yields the principal finding of 
this study, 

The Weibull form is recaptured. This simple, elegant formula provides 
a relationship among the probability of slipping (or falling below pc), the 
length of the walk (n steps), the critical friction criterion ~ l ,  and three 
statistical parameters that characterize the floorlfootwear set. The three 
Weibull constants describe the entire distribution of friction coefficients 
including their average, their spread, and their asymmetry. 

4. CHARACTERISTICS OF THE REFORMULATION 

Because the implications of Equation 5 are so far-reaching and differ so 
radically from the classis-dip and fall formulation, it seems appropriate to 
explore some of the important characteristics of this new theory. 
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4.1. Characterization-Floor/Footwear Set 

' In the classic slip and fall formulation, a floorlfootwear set is characterized by 
establishing its average friction coefficient ;it through testing. In the new 
formulation, the distribution of friction coefficients is described by the Weibull 
distribution, or equivalently, by its three parameters b, b, and m. These 
parameters may be found by equating the first three moments of the Weibull 
distribution to the associated moments of the sample data obtained by testing. 

The first moment of the Weibull distribution about the origin takes the 
form 

where I? is the gamma function. This represents a central measure of the 
.distribution and displays the relationship among the sample mean F and the 
three Weibull parameters. This provides only one equation for three unknowns. 
The other two parameters may be obtained by computing the sample 
variance and skewness and relating them to their corresponding expressions 
using the central distribution moments, (about p); thus, 

where ? is the variance and s is the standard deviation, and 

where m3 is the third central moment and mJs3 is the skewness. Using 
Equations 6, 7, and 8 to solve for the Weibull parameters is a technique 
known as the method of moments; its usefulness is facilitated by a set of 
curves described by Gregory and Spruill (1962). 

The reader should note that scatter is measured by the related concepts 
of variance, standard deviation, or coefficient of variation sm. The skewness 
is used as a measure of asymmetry. Frequency distributions such as f(p) 
that show tails biased to the left, have negative skewness. 
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To illustrate the reformulation theory, a set of static friction coefficients 
were measured under laboratory conditions using a Horizontal Pull Slipmeter. 
Following the test protocol specified by ASTM F609-79 (ASTM, 1989b), 
400 coefficients of friction were obtained between 100 new one-foot square 
asphalt tiles and three 0.5-inch (1.27-cm) diameter leather specimens under 
dry conditions. The sample data is presented as a histogram in Figure 3 and 
as a cumulative distribution function F@) in Figure 4. A continuous Weibull 
probability density curve f@) was fitted to the data in the histogram using 

Coefficent of Fiction, p 

Figure 3. Histogram: Coefficient of friction. 

Coeficent of Flction, p 

Figure 4. Cumulative distribution function: Coefficients of friction. 
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the parameters pz = 0.31, p, = 0.40, and m = 4.75. In Example 1, this data 
is used to illustrate the new slip theory in a thousand step walk of the type 
experienced in an airline terminal. For no particular reason the critical 
friction coefficient was taken as pc = 0.36, which will preclude slipping for 
all but one man in a million. 

Example 1 

Weibull Parameters (from data): 
= 0.31 

m = 4.75 
,u,, = 0.40 

Length of walk: 
n = 1000 ... 1000 step walk 

Critical Friction Criterion: 
= 0.36 

Mean (Average) Friction Coefficient (ID): 

= 0.676 
Variance (s2): 

Standard Deviation (s): 

Coefficient of Variation (sm: 
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Skewness (m3/3): 

Probability of slipping (or falling below p,), F,&): 

In conventional parlance, a tile floor of this composition will have 
a friction coefficient of 0.676 (actually, F = 0.676), which is a high friction 
walking surface. Nevertheless, 5% of the walks will fail in the sense that 
a friction coefficient will be encountered that is less than 0.36. 

4.2. Floor Slipperiness Ranking 

The slipperiness of floors is conventionally ranked by their average coeffi- 
cients of friction. This practice is rooted in the belief that "bigger is better," 
that is, a higher friction floor leads to less slipping than a lower friction 
one. To demonstrate that this is not necessarily true, two additional examples 
of a thousand step walk are treated using the same critical friction criterion, 

= 0.36, and the same zero probability friction, & = 0.31, adopted in 
Example 1. 
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Example 2 studies the properties of a floor/footwear couple with an 
average friction coefficient p =  0.5, which is lower than the corresponding 
floor in Example 1 @ = 0.676). Selecting an arbitrary value for the Weibull 
power parameter m = 8, the remaining parameter yo is caIculated from 
Equation 6. 

Example 2 

Weibull Parameters: 
pz = 0.31 (determined from data) 
m = 8 (assumed) 
po ... (to be calculated) 

Length of Walk: 
n = 1000 steps 

Critical Friction Criterion: 
lu, = 0.36 

Mean Friction Coefficient: 
- p = 0.5 (imposed) 

Parameter, p0: 

jli -P,  
Po = I - -. from Equation 6 

r 1+- 

Variance (2): 
2 = 7.9465 x lo4 

Standard Deviation (s): 
s = 2.8190 x 

Coefficient of Variation (sm: 

s/ji = 5.64% 
Skewness (mJi'): 

m3/s3 = - 0.5337 
Probability of slipping (or falling below pc), Fw(pc): 
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= 1.4131% 

We observe that the high friction floorlfootwear set @ = 0.676) pres- 
ented in Example 1 gives rise to a slip Fw(0.36) = 5% whereas 
the lower friction floorlfootwear set @ = 0.5) provides a smaller slip 
probability Fw(0.36) = 1.41. It should be noted that the variance associated 
with the high friction set (s2 = 7.7232 x is an order of magnitude 
larger than the lower friction set (s2 = 7.9465 x lo4). 

Comparing Examples 1 and 2 shows that here the scatter in the p 
distribution is more important than the average p. "Expressed in terms of 
floods, the statement is very simple: If a small stream has a larger 
dispersion of its discharges than a big river, it may cause larger floods than 
the big river" (Gumbel, 1954). These two examples not only force us to 
abandon our cherished classical notion that high friction is always better 
than low; but it teaches that floor slipperiness cannot be ranked according to 
average coefficients of friction. 

Recall that the floorlfootwear couple addressed in Example 1 used data 
obtained from clean dry asphalt tiles and leather specimens. Example 2 
represents a study of an assumed floorlfootwear couple with an average friction 
coefficient of p = 0.5 and a coefficient of variation of 5.64%. Real world 
studies reported by Andres and Chaffin (1985) indicate that these friction 
characteristics are typical of those obtained between a painted cement floor in 
a large commercial laundry and rubber soled shoes and between a waxed 
cement floor in an automotive assembly plant and leather soled shoes. 

In Examples 1 and 2, high average friction gave way to low scatter. 
This is not a general result as the following example will illustrate. The 
average friction in Example 3 is the same as that used in Example 2, - y = 0.5. The Weibull power parameter is taken as m = 6;  Example 2 used 
m = 8. Once again, po must be calculated using Equation 6. 

Example 3 

Weibull Parameters: 
~ l ,  = 0.3 1 (determined from data) 
m = 6 (assumed) 
yo ... (to be calculated) 
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Length of Walk: 
n = 1000 steps 

Critical Friction Criterion: 
11, = 0.36 

Mean Friction Coefficient: - p = 0.5 (imposed) 
Parameter, po: 

P -Pz 
Po = . . . fiom Equation 6 

= 0.2048 - . . Weibull parameter 

Variance (s2): 
s2 = 1.3652 x 

Standard Deviation (s): 
s = 3.6949 x lo-' 

Coefficient of Variation ( s o :  

slp = 7.39% 
Skewness (m3/s3): 

md? = -.0.3733 
Probability of slipping (or falling below pc), FwCu,): 

Example 3 shows a greater probability of slipping than Example 1 in 
spite of lower variability in the distribution of p (coefficient of variation of , 
7.39% compared to 13.00%). Thus, a set with low average friction -may 
exhibit a higher or lower probability of slipping compared to a set with 
higher average friction. The proper way to compare floorlfootwear sets is to 
compare their Fw(pc)'s using Equation 5. 
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Comparing Examples 2 and 3 whose floorlfootwear sets have equal friction, 
p = 0.5, we find that all other things being equal the lower scatter in Example 
2 (coefficient of variation 5.64% compared to 7.39% in Example 3) leads to 
a smaller slipping probability. This result cannot be reached with conventional 
slip theory that would judge both floorlfootwear couples to be equivalent. Once 
again, ranking by j l  is found to be impossible. hother provocative observation 
involves the application of floor treatments. A floor preparation that would not 
effect the average friction coefficient, may exert an inordinate influence on 
floor slipperiness by causing changes in the scatter and asymmetry of the 
friction coefficient distribution, fw). The effectiveness of floor treatments 
cannot be studied using conventional slip theory. 

The reformulated theory of slip profoundly challenges existing tribometry 
appliances and the formulation of testing protocols. For example, the 
number of measurements required to estimate the mean friction coefficient 
of a floorlfootwear couple is very small compared to the sample size 
required to reliably estimate the standard deviation and skewness. Given the 
poor track record of slipmeters for determining accurate estimates of the 
mean friction at high confidence levels, what chance do they have of 
reliably reflecting the variability and asymmetry of f@)? The profound 
effect of these properties on slip probability is clearly established by the 
calculations associated with Examples 1, 2, and 3. 

4.3. Length of Walk 

The classic formulation of slip and fall is independent of the number of 
steps taken by the' walker. In the new formulation, the probability of slipping 
may depend rather sensitively on the number of steps n. Consider the 
floorlfootwear set described in Example 1. Taking values of ,uc as 0.33, 
0.36, and 0.6, the probability of slipping is computed foi various values of 
n as recorded in Table 2. 

TABLE 2. Length of Walk (n Steps) Versus Probability of Slipping 

Notes. Weibull parameters: pz = 0,31, m = 4.75, & = 0.4 
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It is clear from this table that a floor cannot be characterized without 
including the number of anticipated steps n. Indeed, each time n increases 
by an order of magnitude, the corresponding slip probabilities FW& = 0.33) 
and FW& = 0.36) also increase by an order of magnitude. Furthermore, for 
long walks one finds that it is virtually certain that a friction coefficient will 
be encountered that is lower than pc = 0.6. Keep in mind that this popular 
criterion, recommended by the Americans With Disabilities Act, already 
contains a safety factor. As a final observation, the slip probability is also 
very sensitive to changes in the critical friction criterion; increasing it by 
10% from pc = 0.33 to pc = 0.36 increases the probability of slip by two 
orders of magnitude. 

4.4. Infhite Walk 

An examination of Equation 5 with a view toward taking the limit of F w  as 
n approaches infinity, indicates that whenever pc > pz the quantity in 
parenthesis will be positive and the exponential term will always be driven 
to zero; thus, Fw -+ 1 and slipping is certain to occur. To survive an infinite 
walk, pc must be less than or equal to b which gives Fw = 0. It is unlikely 
that pc will ever equal given that pz is derived from friction data and ~ l ,  

has several definitions. Obviously, in an infinite walk one will encounter the 
lowest possible friction coefficient; if it is below the critical friction 
criterion slipping must occur by definition. 

4.5. Selection of the Critical Friction Criterion 
-. - 

Rewriting Equation 5, an explicit expression for pc becomes, 

For a given length of walk and floorlfootwear set everything in Equation 9 
is known except the term (1 - Fw), which is the subjective reliability that 
might be demanded by a value system. 
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4.6. Walking Profiles 

Are several short walks more critical than a single equidistant long walk? 
Consider, for example, that k  people take short walks of n steps each; the 
total number of steps is kn. The probability of slipping during a single short 
walk is given by Equation 5, that is, 1 - e"e where 8 = [Cu, - pz)lp0]'". As 
the short walks are all independent of each other, the total probability of 
slipping during the k  walks is the sum of the k  probabilities of slipping; 
k(l  - eA). Now, consider a single equidistant walk of kn steps. The 
probability of slipping is 1 - ehe. The long walk may be treated as a series 
of walks; the associated slipping probabilities are not mutually exclusive as 
the first slip terminates the successful completion of the walk. Using the 
addition rule for arbitrary events the slipping probability for a 2n walk may 
be written for two n walks; thus, 

(1 - edbe) = ( 1  - e"') + (1 - e-ne) - (1 - e"e)(l - e"'). 

Generalizing this result leads to the following identity: 

Evaluating and manipulating this equation for k's ranging from 2 to k  leads 
to another identity; to wit, 

Noting that all of the quantities in parentheses are non-negative probabi- 
lities, it is clear from Equation 11 that the slipping probability of a long 
walk, 1 - ehe, is always less than that of k  short walks, k ( l  - e-ne). This 
implies that the number of steps n cannot be used to characterize a floor; 
the entire walking profile must be evaluated. 

4.7. Central Tendency 

Because the distribution of friction coefficients is skewed, the use of the 
mean to characterize a floorlfootwear set has no physical significance. The 
mode, on the other hand, is the most likely value of p that will be 
encountered. It may be expressed in terms of the Weibull parameters as 
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Another candidate for central tendency that retains its meaning for 
skewed distributions is the median: 50% of the friction coefficients are 
lower or higher than this value. Using Equation 9 with F, = 0.5 gives 

The expressions given in Equations 12 and 13 apply to the general 
Weibull form represented by Equation 5. When they are used to characterize 

,the data used in Example 1, n is taken as unity; thus, 

5. CONCLUSIONS 

1. Conventional slip theory is formulated as a simple linear inequality 
relating the average friction coefficient and the critical friction criterion. 
It does not account for the stochastic nature of friction in either its 
characterization of the distribution of friction coefficients or in its 

-. - applications in the area of human locomotion. By contrast, the new 
theory of slip and fall, Equation 5, provides a closed form and easily 
manipulated relationship among the probability of slipping, the critical 
friction criterion, the distance traveled by the walker, the average friction 
coefficient, and both the spread and asymmetry of the bell shaped 
friction distribution curve. 

2. The average coefficient of friction for a fIoor/footwear set provides no 
information about the slipperiness of a floor. For the same average 
friction coefficient, the probability of slipping (or dropping below 
a given critical friction criterion) can vary widely as different values are 
attained for the standard deviation and skewness of f(p) or for different 
walk lengths (n). In contrast with conventional slip theory, the new 
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formulation can be used to evaluate a floor, or rank various floor 
construction materials, or study the slipperiness of candidate floor 
preparations. 

3. To evaluate the slip resistance [Fw(pc)] of a floor system, the actual duty 
profiles must be established, for example, the number of walks of n~ steps, 
n2 steps, ... , ni steps, that will be undertaken in a given time period. 

4. To characterize floor slipperiness for a particular footwear material, 
a protocol must be available that can estimate the mean, standard 
deviation, and skewness of a friction coefficient sample with accuracy 
and confidence. This will require tribometers that can efficiently measure 
large numbers of friction coefficients. Furthermore, the machines must 
not effect a floorlfootwear measurement by repeated trial reading at 
a single location. In addition, a slipmeter must suppress its own variability 
and that of its operator. 

5. One of the most important findings that flows from the extreme value 
formulation of the slip problem is that fiiction data w)] must follow the 
Weibull distribution. 

6. The most important physical feature of the new formulation of the slip 
problem is the explicit recognition that slip depends on the smallest 
friction coefficient encountered during ambulation and not on the average 
friction F used in conventional theory. 

7. The questions "how many walkers slip?" or "how many walkers fall?" 
are almost never the foci of an inquiry in the USA. Slip and fall analysis 
is almost entirely of the golno go type, that is, the determination of 
compliance or non-compliance of the average friction coefficient with 
codes and standards arising from rule-making activities of consensus, 
statutory, or regulatory value systems. However these value systems 
arrive at a critical friction criterion pc, the new slip theory given by 
Equation 5 describes how often p will drop below & during a walking 
scenario. Fw(,uc) never predicts the actual probability of slipping. 

If is set equal to, say, the 50 percentile value of HIV for males during 
a straight walk, pc = 0.17 (see Table I), Fw(0.17) predicts the probability 

,that 50 percentile males will slip. This information is not enlightening. 
If walkers do not slip, they will not fall. The converse is untrue; 

walkers that slip do not necessarily fall. 
As it turns out, an appeal to reliability theory will enable us to 

calculate the probability of walkers actually slipping. The reliability R of 
a floorlfootwear couple is the probability that its resistance pc is in 
excess of its loading (HIV) or that pc - (HIV) > 0. In general, this 
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reliability is given by Equation 14. This is the probability that walkers 
will not slip or fall, thus, 

where AWV) is a gaussian distribution expressed as 

- 
where HN is the mean and o is the standard deviation of the (HN) - 
distribution. In this representation, -oo 5 HN 5 9  Various sets of (HN, o) 
are given in Table 1. Also, the Weibull probability density function f(pc) 
may be found by differentiating Equation 5, that is, 

Equation 14 must be solved numerically. Kececioglu and Cormier (1964) 
give an excellent presentation on the development of R and they describe 
various methods for integrating it. 
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