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Human Push Capability
By Ralph L. Barnett* and Theodore Liber**

a) Hand Contact

b) Shoulder Contact c) Buttock Contact

Figure 1 - Pushing Configurations
ABSTRACT

Use of unassisted human push capability arises from time to time in the areas of
crowd and animal control, the security of locked doors, the integrity of railings, the
removal of tree stumps and entrenched vehicles, the maneuvering of furniture, and
athletic pursuits such as football or wrestling. Depending on the scenario, human
push capability involves strength, weight, weight distribution, push angle, footwear/
floor friction, and the friction between the upper body and the pushed object. Simple
models are used to establish the relationships among these factors.

I. INTRODUCTION

Horizontal pushing forces are developed by a person leaning against an object with
his feet planted on the ground or floor and with some portion of his torso or hands
touching a vertically projecting surface such as a wall. Sometimes the body is
extended to augment the forces created by leaning alone. Typical pushing configu-
rations are illustrated in Fig. 1 where the effective body length L and the push angle
o are delineated. Clearly, in each of these scenarios sliding may occur at contact
areas along the floor or wall; sliding at the wall may be upward or downward. Figure
2 depicts situations where sliding is restrained along the wall, or floor, or both.

In our analyses, the contact areas are all treated as hinges; they provide no rotation
resistance. Furthermore, the support surfaces will resist only compressive and
tangential forces, i.e., forces pushing into or along the wall or floor or a restraint. As
a final approximation, any lengthening of the body between contact points and the
associated axial thrust will assume a direction defined by the push angle a. This
lengthening process will be referred to as “human jacking”.

*Professor, Mechanical and Aerospace Engineering, lllinois Institute of Technology, Chicago, and Chairman, Triodyne Inc., Niles, IL.
** Senior Science Advisor, Triodyne Inc., Niles, IL
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a) Hand Restraint - Up or Down

b) Foot Restralnt

¢) Foot Restraint with Downward
Shoulder Thrust

d) Foot Restraint with Downward
Shoulder Pull

e) Foot and Shoulder Restraint

f) Foot Restraint with Downward

Shoulder Thrust
Figure 2 - Slip Inhibitors
When leaning is combined with “human jacking”, choos- n
ing the correct direction for frictional resisting forces is a W=)>)W Eq.1

little tricky. When bodies are sliding on a surface itis easy
to visualize friction forces opposing the motion. On the
other hand where no motion occurs, the direction and
magnitude of frictional resistance cannot always be deter-
mined a priori. For example, if two people are pushing a
heavy stationary refrigerator in opposite directions, the
direction of the friction force acting on the bottom of the
unit is unknown. At any given moment it will help the
weaker actor. Friction forces oppose both real and incipi-
ent motion. As will be shown, when simultaneously
leaning and “jacking” against a wall, the wall friction force
on the body acts upward for small jacking forces and
downward for large ones.

ll. LEANING/NO AXIAL THRUST

If a rigid human form is leaned against a wall (no jacking
forces), it may be subjected to external downward acting
forces arising from gravity loads and, perhaps, to the
direct downward pull provided by the arms illustrated in
Fig. 2d or to the reaction to shoving by the arms depicted
in Figs. 2c and 2f. A useful mathematical model of a
leaning person is shown in Fig. 3a where W, is a typical
load and a, describes its distance from the base. The
associated free body diagram is described by Fig. 3b
where Wrepresents the sum ofthe W’s and g is the center
of force, i.e.,

2

Il
—

Eq. 2

=)

Consequently, the influence of W alone is equivalent to the
entire system of W,’s. When the human body is stationary,
the forces shown in the free body diagram can be related
by three planar equilibrium equations [1]:

Moment Equilibrium About Base:

V.Lcosor+ H,Lsinat —Wacoso =0 Eq.3
Vertical Equilibrium:
V+V,-W=0 Eq. 4
Horizontal Equilibrium:
H-H =0 Eq.5



a) Mathematical Model

W

b) Free Body Diagram

Figure 3 - Leaning Rigid Body (Reaction Forces are shown in their positive directions)

These equations may be used to determine three of the
four reaction forces, H, ¥, and V,, in terms of the unknown
reaction H,; thus,

V= W(%)— H tana Eg. 6a
V, = W(l—%)+Hb tano Eqg. 6b
H=H, Eq. 6¢
H, = unknown Eqg. 6d

An additional equation is required to solve for H, and the
other three reactions. Since the action of every static
force has an equal and opposite reaction , the magnitude
of the horizontal reaction H, represents “push” of the
human form on the wall. The focus of this paperis not only
to establish an expression for H, but to maximize it by
choosing the best push angle «. This will, of course,
require yet another equation. It should be pointed out that
for pure leaning of the human form Eqgs. 6 are identical to
those governing the static behavior of straight or exten-
sion ladders [2].

A. Conventional Wall (Vertical Push Surface):

If one leans against a conventional wall at an arbitrary
angle, a unique expression for push, H, cannot be deter-
mined. On the other hand, bounds on H,may be developed
based on two physical observations. First, leaning per-
sons will either remain stationary or their feet will slip along
the floor away from the wall; the associated downward
slide of the torso will be resisted by the reaction ¥, shown
in Fig. 3b which cannotbe negative, i.e., V. 20. Second, the
opposition to the sliding torso can never exceed its maxi-
mum friction resistance H, u,, i.e., V,<H, u where u is the
static coefficient of friction at the wall contact in Fig. 3b.
Using Equations 6a and 6¢ we obtain,

Vt20=>W(%)——HttanaZO

of,

) Eq.7

and

V<Hu = W(%)— H tano < H, U,



or
a
2
H>— L/ Eq. 8
U, +tano
Consequently, push, H, is bounded as follows:
a a
i) ., M)
_\LJ]_ <H< _\L) Eq. 9
U, +tano tano

. We observe that the lower bound, Eq. 8, is maximized by
using the smallest possible push angle «. If the push angle
is reduced, eventually the feet will slip along the floor away
from the wall. Incipient and real sliding of the human
form changes the indeterminate friction forces, V<H pu
and H,<V, u,, to two equality force equations V, = H, u,
and H, =V, u,thatwilluniquely establish the maximum
push and the optimum push angle o;. Here, y, is the static
friction coefficient at the base contact in Fig. 3b and the
subscript “” indicates conditions at incipient sliding. Us-
ing Egs. 6,

V, =H, K
or,
a
H p, = W(Z)_ H, tano,
Thus,
"2
H=— L/ Eq.10
° U, +tano,
Also,
Hbo = Vbo.ub
or using Egs. 6b and 6c,
a
H, = yb[W(l - Z) +H, tan ao]
Solving for tan o, and using Eq. 10, we obtain,
tana, —(é) L
0 LAy, ¢ t Eq. 11

Further, the optimum push angle o, becomes,

4fal) 1
o, =tan 1[(2)(;+ﬂ,)_ut:| Eqg. 12
b

The associated maximum push is found by substituting
Eq. 11 into Eq. 10,

Max.push = F = w _ MW

o (Lﬂlt) (1+ p,1t,)

K,

Eq.13a

The associated reactions are found from Egs. 6,

w u,w
Hbo = = ]
(L + #,) (14 bt ) Eq.13b
i,
W
Vo = 1) Eq.13c
Mt W
N (1+ﬂbﬂ,) Eq.13d

Comments:

1.

The maximum push capability given by Eq. 13 de-
pends on the person’s total weight W and not on its
distribution along the body.

The optimum push angle «, depends on a person’s
weight distribution (a /L) and not on the total weight W
or overall length L. The center of force (a/L) con-
tained in Eq. 12 may be written using Eq. 2, as

26

This dimensionless term does not depend on the total
weight W or the overall length of the leaning element L.

As an example calculation, take the center of weight
close to the wall (Fig. 1¢), a /L=0.8; use a wall/torso
friction coefficient u = 0.25 and a floor/footwear fric-
tion u, = 0.75. Then,



Max Push: matha = ——j (Eg. 1)

(—1— + 0.25)
0.75

=0.632 W

Opt. Push Angle: o;, = tan™’ li(—a—)(i + ﬂ:) - ,u,] (Eq.12)
LA u,
. 1
=tan | 0.8l —+0.25[-0.25
0.75

=4547°

4. Using the input from the preceding example, a person
leaning on a wall at a non-optimum push angle o=70°will
develop a push between the following extremes (Eq. 9):

A, +tano tan
W(0.8) <H < W(0.8)
0.25 +tan70° tan 70°

0267 W<H <0291 W

5. A leaning person can find the best push angle auto-
matically by continuously lowering « ; when the feet
just begin to slide the push angle is o

6. Maximum push capability (Eq. 13a) is improved by
decreasing the wall friction and increasing the floor
friction.

B. Slippery Wall

A greasy wall or torso or an ice covered wall leads to a
condition where the wall friction may be approximated as
zero, i.e., u, = 0. Under these circumstances, leaning
against the wall produces a push given by Eq. 13a with u,
taken as zero, thus,

Max. Push=H, = nw Eqg. 14
0

This is a very efficient pushing scenario because the wall
friction does not inhibit the wedging action produced by
leaning. The maximum push angle is described by Eq. 12

when g, = 0,
alfa
o, = tan Z b

Eq. 15

Comments:

1. When p, = 0 is inserted into Eg. 9 the upper and lower
bounds on H, coincide; therefore,

Eqg. 16

This relationship for push is valid for all push angles
greater or equal to the optimum o, given by Eq. 15.
When u, = 0, V, = 0. This equation together with the
three equilibrium equations, Eqgs. 6, allows all the
reactions to be uniquely determined.

2. The maximum push, u, W is equal to the pull force
required to drag a person across a floor on their feet.

C. Weightlessness

Pure leaning produces a pushing force only when
downward loads are present. Observe that the maximum
push described by Eq. 13a is proportional to W. If only
gravity loads make up the total W, a weightless environ-
ment must reject leaning as a feasible pushing agent.



D. Arm Assisted Leaning:

Sometimes there are appurtenances on the vertical
contact surfaces that enable a person to augment gravity
loads during the leaning scenario. Fig. 4 illustrates a

Figure 4 - Arm Assisted Leaning

situation where the arms may lift up on a vehicle's bumper
to provide a downward shoulder load of F. The same
effectis created in Figs. 2c and 2f when the person pushes
upward. The previous formulations of the leaning problem
will accommodate this special loading situation by adopt-
ing appropriate expressions for the load W and the load
center (a/L). Specifically, Eq. 1 may be written as,

W=iVl§=F+WG

i-1

Eq.17

where W_is the total gravity load and F is the force created
by a person’s arms. From Eq. 2 we obtain,

(5)-2000 ) (5 )
() o)

where (a/ L) locates the force F and (a; /L) is the load
center of the gravity loads as indicated in Fig. 4. Substi-
tuting Egs. 17 and 18 into Egs. 13a and 12 we obtain,
respectively, the maximum push and the optimum push
angle for the case of arm assisted leaning:

Eq.18

F+W,

(o)
_+:LLt
H,

Max Push = Hto = Eq.19

o, = tan

A () g

—+ —H, rEq.20
oW, o ut) K, (Eq

Comments:

1. The pushing force can be greatly enhanced by
using the arms for assistance. People who can lift
their weight can double the conventional push since
F=W,

2. In a weightless environment W, becomes zero.
Because the force F is unaffected by gravity, the
arm assisted leaning method remains a feasible
pushing scenario.

3. For high friction floors, u, ~1, and low friction walls,
u, =0, almost the entire lifting force F is translated
into pushing.

E. Foot Restraint

In all of the previous leaning protocols, pushing capa-
bility was ultimately limited by a push angle that caused a
person’s feet to slip. When a foot restraint of the type
depicted in Fig. 2b is available, all slipping at the floor is
eliminated; no additional equation is available for uniquely
determining the four reaction forces. We must be satis-
fied, once again, to use the bounds in Eq. 9 to characterize
a range of possible push values.

If the foot restraint shown in Fig. 2b is located a distance
e from the wall and if e < L, we may write tanar = /(L/¢)’ —1
and use this in the inequality Eq. 9;

w7
L <H<

U, +\/(L/e)2 -1

Under extreme conditions where the leaning body ap-
proaches horizontal, the push becomes unmanageable.
If the effective length of the leaning body is reduced, e.g.,
by bending the knees,

lim+/(L/e)* —1=0

m Eqg. 22
The same is true if the vertical support surface gradually
moves away from the foot restraint and e approaches L. In
both cases, Eq. 21 becomes



Eq. 23

For a frictionless wall where , is zero, Eq. 23 shows that
H is unbounded, H,= . With friction, taking as a practical
example, (@ /L)=0.8 and y, = 0.20, the almost horizontal
body push will not be less than four times the body weight,
i.e., H>4W. The push load may exceed the capacity of the
human body to support it. Because the leaning figure is
horizontal, H, not only pushes on the vertical support
surface, it also produces a direct axial compressive load
on the slanted portion of the body. If the compression
exceeds a person’s strength, it may relieve itself by some
injury free measure, e.g., by causing the knees to bend; if
not, the body will sustain a force-abating injury.

Comments:

1. In section II-B where slippery walls provide u, = 0, the
foot restraint may be accounted for by selecting u, = .
Note that Eq. 14 then gives max H, = « and Eq. 15
becomes o, = 0. This recaptures our current findings.

2. During pushing, if the vertical support surface moves
away from the foot restraint, the pusher may be
injured by both the fall to the floor and the compres-
sion loading on the body.

ll. AXIAL THRUST/WEIGHTLESS ENVIRONMENT

For pure axial loading, Fig. 5a provides a mathematical
model which represents the human body as a line seg-
ment with two terminal hinges. An axial force, P, is
generated with a hydraulic piston located anywhere in the
span. One can think about the human body as a jack and
the force P as the jacking force. The free body diagram
associated with this model is shown in Fig. 5b where the
two end reaction forces P have an axial orientation. From
statics [3], in the absence of lateral forces a hinged strut
can only be loaded along a straight line drawn between the
hinges. The horizontal and vertical components of the end
reaction are indicated in the diagram.

A. Rough Contact Surfaces

When no lateral loads are present, the leaning element
depicted in Fig. 5 cannot equilibrate the thrust P unless the
forces at the contact points resist the reaction force
component at the top and bottom of the member. At the
top this implies that the frictional resistance be equal to or
greater than the upward reaction, i.e.,

(Pcosa)y, 2 Psinc... no slip Eq. 24
At the bottom of the member, no slip demands that

(Psino)u, 2 PcosQ... no slip Eq.25

Hydraulic
Jack

a) Mathematical Model

Psina

Pcos o

Poos o

Psin o

b) Free Body Diagram

Figure 5 - Weightless Human Jacking System



Equation 24 indicates that i, = tano; Eq. 25 shows that
U, =1/tanc . Consequently, equilibrium requires that

tan”(1/ 4, )< <tan™ g, Eq. 26
If the friction coefficients are both restricted to the
range zero to unity, the left hand side of Eq. 26 sweeps
between 90° and 45° the right side from zero to 45°.
Therefore, the inequality can only be satisfied by a.=45°.
Thus, u, = u = 1; the probability of this happening is de
minimus.

Comments:

1. In a weightless environment, jacking of an inclined
body between rough surfaces is not possible.

2. The inability to statically develop a resisting axial
thrust with an inclined body without gravitation is
independent of the “jacking” force P.

B. Foot and Wall Restraints

Conventional restraints on the motion of feet and shoul-
ders are provided by the appurtenances illustrated in Figs.
2e and 2f. If the people shown in Figs. 2¢ and 2d can hold
their arms rigid, i.e., no thrusting or lifting, these scenarios
will also qualify as foot and shoulder restraints. These
cases are accurately modeled by the inclined member
depicted in Fig. 5; consequently, the push capability is
provided by the horizontal force Pcosa. At any push
angle,

H, = Pcoso Eq. 27

where we observe that the smaller the angle a, the larger
its cosine and the greater the push, H.

Comments:

1. Foot and wall restraints allow push in a weightless
environment.

2. When a = 0 the pushing body is lying on his back or
sitting on the floor. Here the full “jacking” force P acts
perpendicular to the wall; H = P.

3. The push force is limited only by the axial strength
of the inclined pusher.

C. Foot Restraint

Referring to Fig. 2b, if a body is inclined against a
vertical surface in a zero gravity field, no push reaction
occurs. Observe that the inequality in Eq. 9 shows both
the upper and lower bounds on H, to be proportional to 7.
Thus, W = 0 implies that H = 0. If a leaning body is
elongated with its feet restrained, it will merely ride up the
wall with no resisting forces. With H, =0, the frictional
resistance to sliding, H, 11, , is zero. To equilibrate the free
body member shown in Fig. 5b, H, must resist the top
horizontal reaction, i.e., H =P cos a. Hence, H =0implies
P=0. In summary, “jacking” is not possible in a weightless
environment when o > 0.

The system can be tricked. If the leaning body can be
momentarily held in position or can be laterally loaded
while the leaning body begins to elongate, a “jacking”
force P will develop. To sustain this force P after the
lateral loads are removed, the vertical reaction compo-
nent P sin oo must not cause slipping at the wall, i.e.,

(Pcosa)u, 2 Psina ... no slip

This becomes,
U, 2 tano

or,

a<tan(y)=c, Eq. 28
where ¢ is the critical jacking angle. For push angles that
don’t exceed o, the leaning body will stay in place and
may generate any “jacking” force P consistent with the
human body’s axial strength. The push force H, is

H =Pcosax o<a, Eq. 29

Comments:

1. If pushingis interrupted so that P temporarily drops to
zero, it cannot be resumed without reapplying the
preload “trick”.

2. When the push angle is less than the critical angle a,
the efficiency of the foot restraint scenario is the same
as that found in the case using both foot and wall
restraints.



IV. LEANING WITH AXIAL THRUST

Our previous analysis showed that axial thrust
acting alone produces no push. When combined with
leaning there is no reason to believe that it will make a
contribution, and indeed, this is shown to be the case
for low values of thrust. However, a special effect
manifests itself when the jacking forces become great
enough to lift the torso. Here, the direction of the
frictional wall resistance reverses which enables the
total push to jump to a higher level.

At the outset, humans push an object in a horizon-
tal direction by leaning against a vertical surface in a
near vertical orientation. This produces an initial hori-
zontal force. Because the initial push angle is steep
there will be no tendency to slip at the torso/wall or
footwear/floor interfaces. If the initial push must be
enhanced, it is natural for persons to exert a continu-
ally increasing axial thrust or “jacking” by forcefully
extending their effective body length. As the thrust
increases three different ranges are encountered. In
the first, the thrust is low and the torso is supported by
an upward acting friction force. Throughout this region
it will be shown that the push is bounded between limits
that do not depend on the axial thrust. In this range, the
wall and floor reactions remain unchanged and the
axial thrust combines with gravity induced stresses to
provide, once again, the original gravity reactions ob-
tained in Section Il.

Eventually, the axial force becomes large enough
to overcome the vertical gravity force component at the
wall. Further jacking reverses the direction of the top
friction reaction to resist the incipient upward move-
ment due to jacking. in this second range the push
jumps to a higher level with new bounds on the push
that are higher than those in the low thrust range.

If the jacking continues it will culminate when the torso
slips upward at the wall. This action provides a “fourth”
equation to uniquely determine all four reactions; this is
the third range. If the resulting push level is not satisfac-
tory, the axial thrust is relaxed and a new foothold is
established with a smaller and more advantageous push
angle. Jackingis resumed until upward torso slip once again
maximizes the push for the chosen push angle. This overall
pushing scenario is repeated until the push is sufficient or
until the feet slip at the lowest possible push angle.

A. Low Axial Thrust

When the jacking forces are low, the gravity loads on
a leaning body predominate and an upward friction force
is needed to support the torso. The free body diagrams in
Fig. 6 define the coordinate system for the reactions at the
top and bottom of the leaning figure. The gravity reactions
shown in Fig. 6a were previously derived in Egs. 6; the
axial thrust reactions depicted in Fig. 6b were obtained
from Fig. 5. Thus, the combined forces may be written as

v, =W(%)-h,tanc

h,, =Pcos o

tp=

C-l\

A}

hy

Vp =W(1-%)+hbtan0c

a) Gravity Loading

Vp =-Psina V;

hbp=PCOS(X Hb

pr =Psn g Vb

b) Axial Thrust ¢) Combined Load

Figure 6 - Leaning Body With Low Axial Thrust



V.= W(%)—hbtana—Psina=

W(%) —(h, + Pcosa)tanc Eq. 30a

V, = W( —%)+hb tana + Psino =

W(l —£)+ (h, + Pcosa)tana Eq. 30b
L

H, = (h, + Pcosa) Eq.30c

H, =(h,+ Pcosa) Eq.30d

Once again, the three equilibrium equations must be aug-
mented by an additional equation to solve for V, V,, H and H,.
On the other hand, bounds on the push force H, may be
obtained from the conditions that the mathematical model
becomes invalid if V, is negative and that V, cannot exceed the

torso/wall slip resistance.

Using Egs. 30 and i, = h, we obtain,

")
V. 20=>(ht+Pcosa)S—L Eq. 31
tano
"3
V, < wH, = (h + Pcosa) 2 ﬁ Eq.32
t
Thus,
") "2
_\LJ_ (b, + Pcosax) < L) Eq.33

tano + U, tan o

When the torso undergoes incipient downward slip,
V,=u H,. Thus, the missing “fourth” equation is provided
to uniquely determine the reactions. Using Egs. 30,

10

1)
H =H, = (h, +Pcosa) =L/

; Eq.34a
tano + U,
a
w(z)
V,=(v,- Psing) = ——=% Eq.34b
tano + U,
a
tano + ,ut(l - Z)
V, =(v, + Psina)=W,|
’ ( ’ ) tano + U, Eq.34c

When « is continually decreased from near vertical, there
is a value, a= a., where incipient downward torso sliding is
first encountered. This incipient sliding condition remains at
all push angiles lower than o including the critical angle, o
= « ,, where foot slipping begins. Incipient or real foot slip
gives rise to the equation H, = u,V, which enables one to
determine ¢, Unfortunately, there is no available equation
that will allow o, to be established. It must be recognized
that leaning at steep angles, o > «, , does not produce
incipient torso slip. Furthermore, because the reactions
given by Egs. 34 are invariant with respect to axial thrust,
jacking strategy will not effect the onset of torso slip.

Toimprove push, the push angle should be lowered with
the proviso that foot slip is avoided, i.e.,

H<supv, Eq.35
Substituting Eqgs. 34 into Eq. 35 we obtain
W(g) tanor + ,ut(l — ﬂ)
LT < u,W| L
tano + U, tano + U,
or,
tano + U >(E) L+,u
t = L i, t |- Eq.36
Thus,



Eq.37

azmn{(g[i;m)-u,}

The smallestpush angle, « = o, occurs whenthe equality holds
which corresponds to incipient foot slip; here, H, = u,V, and

tano, + U _(5)(1 + U
0 [ Z ‘u_b t

This is used in Egs. 34 to describe the optimum case where
simultaneous sliding occurs at the torso and feet; hence,

Eq.38

Max Push = (h, + Pcosot,) = H, = (i:”’;z/—“t) Eq.39a
(h, + Pcosay) = H, = ﬁj Eq.39%b
(v, - Psine,) =V, = % Eq.39¢
(v, + Psinay) =V, = ﬁ Eq.39d
0t = tan*[(%)(ﬂib + ut) - Nt] Eq. 3%

From Eq. 39e note thatthe smallest push angle o, depends only

on the friction coefficients 4, u, and the value of (a/L); noton
Wand P. Thus, the angle ¢, is the same for all combinations of
Wand P.

By setting the jacking force P equal to zero, Eqs. 39 may be
used to establish all of the gravity reactions; 4,, v,, 4, and v,
Specifically, the vertical wall reaction due to gravity is found
from Eq. 39c to be

_ MU W

t (1+ﬂbuz) Eq. 40

The validity of the low axial thrust model prohibits the vertical
wall reaction V, from becoming negative, i.e., V,20. In the
case of maximum push, o = ¢, Eq. 39¢ may be written,

or using Eq. 40,

P < Vt — W :u'b‘ut =
sine, sinog \ 1+, 14,

K Eq 41

Therefore, the “low axial force” formulation is valid if P does
not exceed the right side of Eq. 41 which is defined as P, the
critical axial thrust.

When Eq. 41 is combined with Eq. 39e the critical
axial thrust, P=P, becomes,

W
[1+ (11,8, Jsin tan™{(1/ s, ) @/ L)1+ o) - 18, ]}

F

Eq.42

When P>P , the vertical reaction V flips direction and acts
downward. The low axial thrust range for i, =0.75, 4 = 0.2

and (a/L)=0.8is P < P, or

P<0.182 W=P,

The associated maximum push is given by Eq. 39a.

Max Push =0.652 W

and the corresponding optimum push angle, Eq. 39e, is

o, = 45.75°

For a 200 Ib. person, a maximum push of 130 Ibs is
obtained with any axial thrust below 36 Ibs.

1"



B. High Axial Thrust

If the maximum push available in the low axial range,
P <P, is inadequate, a person can exert more jacking
force to move into the second range, P > P, where without
slipping the torso would be pushed upwards. The free
body diagrams associated with the high axial thrust case
are displayedin Fig. 7. The reactions shown for the gravity
loading in Fig. 7a are found by setting to zero the sums of
the vertical forces, horizontal forces, and the moments
about the base; hence,

V, = —W(ﬁ) +h, tano
L

Eq. 43a
v, = W(l - %) + h, tano Eq. 43b
h =h, Eq. 43¢
h, = unknown Eq. 43d

When these reactions are added to the axial thrust
reactions given in Fig. 7b, we obtain

V= —W(%) +tanc(h, + Pcosar) Eq. 44a

V, = W(l - %) +tanofh, + Pcosct)  Eq.44b

H, =(h + Pcosa)=(h,+Pcosat)  Eqd4c

H, =(h, + Pcosa) = H, Eq. 44d

These equations cannot be solved uniquely for the four
reactions; however, the push H may be bounded by
insisting that vV not reverse directions, V, > 0, and by
limiting the magnitude of V so that the maximum sliding
resistance p H, of the torso against the wall is not
exceeded:

T ;
Vp =W(-2) +hytn

a) Gravity Loading

Vp = Psino Vi

b) Axial Thrust

-—
T hbp =Pcos

T h
Vp

¢) Combined Load

Vpp =Psin o

Figure 7 - Leaning Body With High Axial Thrust
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V20= —W(%)+tana(hb +Pcosa) 2 0

or,
"L
(h, + Pcoscr) 2 L Eq. 45
tanor
V.<UH = —W(%)+ (h, + Pcosa)tane <
,u,(hb + Pcos a)
or,

")
(h, + Pcosar) < _\LJ

Eq. 46
(tanor— u,)
Since from Egs. 44c,
(h, + Pcoscr) = (h, + Pcosa) = H,
tan o tano — U,

The bounds on H, may be combined from the low and high
thrust ranges, Egs. 33 and 47; hence,

tana + [, " tano

< Wa/L)

( t)HighP_m Eq.48

Observe that the upper limit of the low thrust range is equal
to the lower limit of the high thrust range. Furthermore, the
limits are all found to be independent of the jacking force P.

If the base of the leaning figure does not slide, ever
increasing jacking forces will eventually cause the torso to
slip upwards into the third range. Atincipient slip, V,= u H,
which corresponds to the equality sign in Eq. 46. Thus,

()
H =Hb =(ht+PCOSOC)=(tanTL_‘u—)—

t

Eq.49a

The associated reactions are derived from Egs. 44;

a
w(z)
V=——=c Eq.49b
tano — U,
a
tano — /.t,(l - Z)
V=W
tano — U, Eq. 49¢

It should be noted that Egs. 49 show that the four
reactions, including the push H,, are independent of the
axial thrust P. Once one moves into the third range
where P> P, the jacking force is limited by the torso slip
as are the reactions. To obtain higher levels of push it is
necessary to use smaller push angles. This strategy will
eventually be limited by foot slip. To prevent such slipping,

H, <1V,
From Egs. 49,

W(g) tano — /,tt(l — ﬁ)
)y L

tano — U, tano — 4,

Hence,

Eq. 50

or,

Eq. 51

i |(£f Lo o]

Clearly, the smallest acceptable push angle, a = «_, is
associated with the equality sign;

(tanar, — 1) = @(ui . H,)

Using this relationship in Egs. 49 provides the maximum
values of the reactions; thus,

Eqg. 52
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Max. Push = (h, + Pcosor,) = H, = (lbev:/u,) Eq. 53a
(h, + Pcosa,) = H, = (—% £q. 535
(v, + Psina,) =V, =(“1% Eq. 53¢
(VﬁPSinO‘s):Vb:# Eq. 53d

o =1 -1 E i_
s=an a7 ’ M|t H, Eq. 53¢
b

where,
uu, =1 Eq. 53f

The maximum push and the associated reactions in
the third range are given by Eqgs. 53. When these are
compared with the corresponding reactions in the first
range described by Egs. 39, the third range reactions are
all found to be larger because of their smaller denomina-
tors. For example,

L+ 4,

MaxPush
1 _ 'ub 'ut J( )Low Thrust

(Max PuSh)High Thrust = (

Using i, = 0.75 and 1, =0.2,

(Max Push) =1.353 (Max Push)

High Thrust Low Thrust

where High Thrust is associated with P > P, and Low
Thrust occurs when P < P, We observe in this example
that the High Thrust push is 35.3% higher than the Low
Thrust push. If y, = 0.4, the increase is 85.7% higher.

Comments:

1. All of the reactions in the high axial thrust range (P > P),
including Push, become unbounded as (u, 1) ap-
proaches unity. The optimum push angle, o, given by

14

Eq. 53e, becomes 45° when y, u = 1. Under these
conditions it will be recalled that jacking is possible in
a weightless environment. At high friction levels, say
u, p, = 0.9, the maximum push in the high axial thrust
range is Push = 4.74 W.

Generally speaking, the optimum push angle in the
high thrust range is steeper than in the low thrust

range. To show that o > « let @=tano, —tanq,.
Using Egs. 39e and 53e,

s CoOEh BEOK
o-s(-3)

Observe that @ > 0 since (d/L)is always between
zero and unity. Q.E.D.

In the low thrust range, P < P, no jacking force is
required to achieve maximum push. In the high thrust
range, P > P, the limiting thrust P = P will suffice to
achieve the maximum push which does not depend
explicitly on P.

When jacking out of the optimum push scenario in
the low thrust range, P< P, the optimum push angle
is a = ;. Atthis angle the feet will slip when jacking
produces incipient upward torso slip. Pushers must
adjust their stance so that their push angle is a > «,
where o 2 o,

Some attention should be focused on the point where
V, = 0. Here, the axial thrust P = P, compietely
counteracts gravity loads and precludes slip in either
direction. The direction of the torsomay be up or down
at this one point. The equation V, = 0 furnishes a
“fourth” equation that may be used with either the low
thrust equilibrium equations, Eqgs. 30, or the high
thrust equilibrium equations, Eqs. 44. Specifically,
either Eq. 30a or Eq. 44a will provide the push

W)
Ht = (ht +R)COSG) = W

The associated reactions are

1)

tano

b~ 9

H, = (h, + Pcosa) =



V. =(vt—E)sina)=0

t

v, =(vb+POsina)=W

Because V, = 0, one may take p = 0. This reduces the
problem to the case of “Slippery Walls” where the opti-
mum push angle is given by Eq. 15, i.e. tan o= (a /L)y,
At this angle the maximum push is

Max Push = u, W.

C. Axial Forces On A Leaning Body

The reactions acting on the top and bottom of a
leaning body may be resolved into axial force components
as shown in Fig. 8. The top axial force F, will be different
form the bottom force F, because of the interior lateral
gravity loads W,. From the vector triangles we find

F =H, coso—Vsinx Eq. 54a

F, =H,cosa+V, sino Eq. 54b

Adopting the optimum push scenario inthe high thrust range,
P> P, and recalling that V acts downward, Egs. 53 provide

F = —W'u”—)(cosas + U, sinas)

Eq. 55a
(1- w1,

ﬂ—— cos¢ +(——1—]sina
(1 _ ‘ub#t) s ﬂb K Eq 55b

where o is given by Eq. 53e.

Fl'7=

Taking as an example u, =0.75, 4, =0.20,and (a /L) = 0.8,
we find that

F=0723W
F,=1464 W
o, = 47.899°

Figure 8 - Axial Force Components

The axial forces in the optimum low thrust range, P< P,,
may be found from Egs. 39 and Egs. 54;

F = -M)(cosao — i, sinay,)

Eq.56a
(1+ p,u,

Wu, ( 1 ) .
F =——|cosa, +| — |sin, Eq. 56b
’ (1+ubu,)[ U B

Using u, = 0.75, u, = 0.2, and (a /L) = 0.8, we find that

F=0362 W
F,=1.078 W
0, = 45.754°

Observe that F becomes negative (axial tension) when
o =1

15



Comments:

The axial force components acting on a leaning figure
may be determined from Eqs. 54 for every case where
the reactions are known.

The magnitude of the reaction forces given by Egs. 53in
the high thrust range where P > P, grow larger with
increasing wall/torso friction u,. The corresponding axial
forces described by Egs. 55 also grow when u, in-
creases. The opposite is true in the low thrust range,
P < P, , characterized by the reactions given by Egs. 39.

Pushing scenarios always subject a leaning figure to
simultaneous axial and bending loads. The portion of
the body between the wall and floor contacts becomes
a beam-column [4].

Strength and ergonomic limitations of the human body
are discussed in Chaffin et al, 1999 [5].
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