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ABSTRACT

A rigid body mode of failure has been identified in two piece adjustable grinding wheel

guards for portable grinders. Under the action of a fragment storm, the upper portion of the

guard may tilt and allow an escape displacement to develop at the leading edge of the

protective skirt. Three approaches are described for analyzing this behavior: a very rough

analytical investigation, static testing, and dynamic wheel breakage testing of the guard.

Each reveals the shortcomings of the commercially available guard.

INTRODUCTION

The American National Standards Institute has developed a standard entitled American

National Standard Safety Code for Portable Air Tools, ANSI B186.1-1975 (1). For types 27

and 28 depressed center grinding wheels, paragraph 3.2.9.4(3) states the following

requirements:

“A safety guard for vertical or angle grinders using Types 27 and 28 wheels shall cover the

wheel’s plane of rotation toward the operator for at least 180 degrees, shall cover the side

of the wheel toward the driving flange for at least 180 degrees, and shall have a lip on the

outer edge which curls inward to deflect wheel fragments and to provide necessary

strength. The lip shall extend outside the face of the wheel throughout the 180 degree

coverage” (2).

ANSI’s illustration of a typical guard for a type 27 wheel is reproduced in Fig. 1 (3). It should

be noted that this guard is a one piece nonadjustable guard. Guards of this type have been

dedicated to the type 27 or 28 wheel. Some manufacturers use a single guard of this type

for both type 27 and type 28 wheels that are 17.8 cm (7 in.) in diameter. This single guard

approach is functionally incompatible with both type 27 and 28 wheels that are 22.9 cm (9

in.) in diameter because of the greater disparity in wheel height.
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A type of depressed center wheel guard which is not characterized
by ANSI can be described as a two piece adjustable guard that
is functionally compatible with both type 27 and 28 wheels. This
guard is illustrated in Fig. 2 in the fully retracted position which is
compatible with the type 27 wheel. The vertical adjustment and
basic construction of this guard are similar to the wheel guards
described by ANSI for vertical grinders used with type 6 and type
11 cup wheels. Although the requirements are almost identical
for the depressed center and cup wheel guards, in practice the
cup wheel guards encircle 270 degrees compared to the 180
degrees used for depressed center wheel guards. Industry
testing of single piece depressed center wheel guards and of 270
degree cup wheel guards has provided the protection anticipated
by ANSI in the guarded sectors. With this experience base coupled
with the observation that the thickness used in the adjustable
depressed center wheel guard is over 25% greater than its single
piece counterpart, intuition would suggest that the structural
integrity of the adjustable depressed center wheel guard will be
sufficient to provide the protection required by ANSI.
Unfortunately, intuition is a good servant, but a bad master. When
adjusting two piece guards, care must be exercised to maintain
parallelism between the upper and lower guard portions so that
an escape geometry does not develop in the guarded segment
which would allow broken wheel fragments to escape. The
fragments themselves may force the upper guard into a nonparallel
orientation relative to the wheel’s plane of rotation, thus achieving
the escape geometry which destroys the guarding capability.

The bolted joints connecting the upper guard to the lower guard
utilize vertical slots which allow both rotation and sliding at the
location of bolts 1 through 4. At all positions, from the fully
retracted to the fully extended, the upper guard can achieve a
rotation of approximately 11°. When the grinding wheel is in a
horizontal position, the upper guard can be rotated in a plane
which is perpendicular to the line between bolts 1 and 4. This
rotation α illustrated in Fig. 3 for the fully extended and the fully
retracted initial positions always produces the same total sliding
of the bolts at locations 1 through 4. Furthermore, the joints at
bolts 1 and 4 always undergo a rotation of α and the joints at bolt
locations 2 and 3 rotate through an angle whose component in
the plane of rotation is α. The rigid body rotation α gives rise to
a displacement ∆ of the leading edge of the upper guard.

The upper surface of the grinding wheel is typically set anywhere
from zero to 6.35 mm (0.25 in.) below the top edge of the skirt.
Consequently, almost any displacement of the guard may allow
some particles to escape and 1.27 cm (0.5 in.) will offer no
interference at all. This paper examines the development of an
escape geometry characterized by ∆. Three methods of analysis
are employed: rough analytical approximations, simple static
testing of the guard, and dynamic wheel breakage testing.

The stochastic nature of friction will not allow anything better than
a first order approximation of forces and energy dissipation.
Grinding wheels may fracture at working speeds because of
trauma introduced in the work environment. The statistical nature
of grinding wheel materials may lead to overspeed disintegration
at proof test speeds and greater. For the 22.9 cm (9 in.) diameter,
7.11 mm (0.280 in.) thick, 0.709 kg (1.5625 lb) type 27 grinding
wheel studied in this paper, guard behavior will be investigated

Figure 1.  Typical type 27 wheel guard

Figure 2.  Two piece adjustable guard in fully retracted position

2.77 mm (0.109 in.)
      Thickness

Bolt 1
[ Grade 5. 6.35 mm (0.25 in.) dia.,
20 threads per 2.54 cm (1 in.),
Initial torque 14.1 Nm (125 lb-in.) Typ.]

Bolt 2

Bolt 3

Bolt 4
12.1 cm
(4.75 in.)

Lower Guard
a = 4.83 cm (1.9 in.)

Upper Guard

2.46 mm (0.097 in.)
     Thickness

b = 12.1 cm (4.75 in.)
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for a rated working speed of 6,000 rpm, a proof test speed of
9,000 rpm, and a typical high speed fracture of 12,000 rpm. The
rough calculations of resistance ignore elastic behavior and
concentrate strictly on frictional resistance and frictional energy
absorption at the location of bolts 1 through 4. The loading
environment is approximated by examining available energy and
by considering rate of change of momentum.

ROUGH ANALYTICAL APPROXIMATIONS

Preload Versus Torque
When a nut and bolt are tightened, the torque T gives rise to a
clamping or preload force Fc. Shigley and Mischke (4) describe
the following simple relationship between T and Fc which is
independent of whether the threads are coarse or fine:

T ≈ 0.20Fcd (1)

where d is the bolt diameter. Using a torque of 14.1 Nm (125 lb-
in.) on a 6.35 mm (0.25 in.) diameter bolt, we obtain a clamping
force Fc of 11,121 N (2,500 lb).

Coefficient of Friction
The determination of the frictional resistance and energy
dissipation associated with the movement of the upper guard
relative to the lower guard requires that we establish the coefficient
of friction µ between the metal elements. Using the simple test
setup shown in Fig. 3a where bolts 1 and 4 are torqued to 14.1
Nm (125 lb-in.) and bolts 2 and 3 are absent, a load-deflection
diagram may be obtained as shown in Fig. 4. Here, a concentrated
downward acting load P is applied to the leading edge of the
upper guard using a universal testing machine. The measured
response ∆ is the deflection directly under the load.

Because of our choice of P and ∆, the area under the load-
deflection diagram represents the work applied to the upper
guard, U1-4. For example, at ∆ = 1.27 cm (0.5 in.), Fig. 4 shows
U1-4 = 2.86 Nm (25.3 lb-in.). By taking moments about the line
through bolts 1 and 4, the ordinate of the load-deflection diagram
may be related to the frictional rotational resistance M1-4 by the
formula:

M1−4 = bP (2)

where b is the moment arm of P. Referring to Fig. 4, we observe
a constant resistance P = 250 N (56.2 lb) which corresponds
through equation 2 to 30.3 Nm (268 lb-in.).

Figure 3.  Rigid body rotation of upper guard

Figure 4. Load – deflection diagram for fully extended upper
guard (Bolts 1 and 4 torqued to 14.1 Nm (125 lb-in.),
bolts 2 and 3 absent)

Figure 5.  Friction surface footprints
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To develop a formula for M1-4, we first note that the upper guard
skirt is sandwiched between a washer and the skirt of the lower
guard. The footprints or contact areas associated with the
washer and interface of the guard skirts is illustrated in Fig. 5. The
frictional moment resistance Mw due to the washer is approximated
in machine design textbooks (5) as:

Mw =
µFcdc

2
(3)

where dc is the mean washer diameter. We adopt the same
formula for the rotational interface resistance MI where dc is taken
as the distance between the pressure centers of the two
rectangular contact areas as shown in Fig. 5. Accounting for bolts
1 and 4, M1-4 = 2(Mw + MI) or:

M1−4 = mFc

di + do

2
+ h + k

2









 (4)

where di, do, h and k are defined in Fig. 5. Since M1-4 is equal to
bP, we may determine µ = 0.0965 from:

µ = 2bP

Fc di + do + h + k( ) (5)

Fully Extended Upper Guard
Resistance. Referring to Fig. 3a, we observe that rotation of the
guard takes place about bolts 1 and 4. Resistance to this rotation
is provided by the frictional rotational resistance of bolts 1 and 4,
M1-4, and by the sliding resistance Fs of bolts 2 and 3 which
provide rotational resistance aFs. The sliding resistance is created
by the four surfaces which sandwich the upper guard skirt under
a clamping force Fc, thus:

Fs = 4Fcµ (6)

The total resisting moment M1-4+aFs, can be used to resist the
moment of an exploding grinding wheel force Q, i.e., eQ where e
is shown in Fig. 3a as the height of the center plane of the grinding
wheel above the bolt line 1-4. Furthermore, the total resisting
moment may be used to resist the external moment Pb which
arises from our static testing described later; thus:

Qe = Pb = M1−4 + aFs (7)

Using equations 4, 6 and 7, we obtain:

P =
µFc

2b
di + do + h + k + 8a( ) (8)

and

Q = b

e
P (9)

Taking the worst case scenario for an exploding type 28 wheel
located just even with the top edge of the guard, e= 6.03 cm
(2.375 in.). Then, P=1,966 N (442 lb) and Q=3,932 N (884 lb).

Energy Absorption. A rigid body rotation α of the upper guard
about the bolt line 1-4 gives rise to a displacement ∆ of the
leading edge of the guard. For small rotations, α ≈ ∆/b and the

total energy dissipated at the friction joints, Uextended, is the
product of α and the total resisting moment M1-4+aFs, or
equivalently, P ∆; thus:

Uextended = ∆
b

M1−4 + aFs( ) = P∆ (10)

For ∆= 1.27 cm (0.5 in.) and P = 1,966 N (442 lb), Uextended is 25.0
Nm (221 lb-in.) and α=6.0°; for ∆=2.54 cm (1 in.), Uextended is 49.9
Nm (442 lb-in.) and α=11.9°.

Fully Retracted Upper Guard
Resistance. When fully retracted to accommodate a type 27
grinding wheel, the upper guard may exercise a rigid body
rotation about the bolt line 2-3 as shown in Fig. 3b. Ignoring any
elastic or frictional resistance from bolts 2 and 3, a rotational
resistance aFs arises from the sliding action of bolts 1 and 4 in
their slots. The normal rotational resistance M1-4 will not occur in
this guard configuration because the relative velocities of
translation will dominate the rotational velocities effectively
eliminating frictional rotational resistance (6). Setting the two
types of external moments about the bolt line 2-3, P(b-a) and Qe,
equal to the resisting moment aFs we obtain:

P(b − a) = Qe = a(4Fc µ) (11)

where Fc can be found by equation 1. Hence,

P =
4aFcµ

b − a
(12)

Q = b − a

e
P (13)

When fully retracted, the subject type 27 grinding wheel gives an
e=3.76 cm (1.48 in.). Therefore, P=2,860 N (643 lb) and Q=5,511
N (1,239 lb).

Energy Absorption. For small angles α, the displacements ∆ and
δ are related approximately as:

δ
a

= d

b − a
= α (14)

The energy Uretracted dissipated during a rigid body displacement
∆ is given either by δFs or ∆P. Thus:

Uretracted =
4aFcµ∆

b − a
(15)

For ∆=1.27 cm (0.5 in.) and P=2,860 N (643 lb), Uretracted is 36.3 Nm
(321 lb-in.) and α=10°.

Load Environment
Energy. Overspeeding typically fractures a grinding wheel into
three or four segments (7). At working speeds, trauma may lead
to fractures that cannot be characterized. Consequently, one can
imagine that the guard may be called upon to manage the kinetic
energy of trapped segments from 1/4 to 2/3 of the original wheel
mass. Because the guard and grinding wheel exhibit elastic
behavior which absorbs very little energy, the friction joints must
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dissipate any lost kinetic energy. For a rotating disk, the kinetic
energy K.E. is given by Hibbeler (8) as:

K .E. = WR2

4g
ω2

(16)

where W is the weight of a grinding wheel of radius R, g is
gravitational acceleration and ω is the rotational speed in radians
per second. Using equation 16, Table 1 is constructed for a 22.9
cm (9 in.) diameter grinding wheel weighing 0.709 kg (1.5625 lb)
with a working speed of 6,000 rpm, a proof test speed of 9,000
rpm and a typical fracture speed of 12,000 rpm. Recall that our
calculations, which overestimate the energy dissipation capacity,
give the following estimates for a 1.27 cm (0.5 in.) displacement
of the leading edge of the guard skirt: Uextended=25.0 Nm (221 lb-
in.) and Uretracted=36.3 Nm (321 lb-in.). These dissipation levels are
one to two orders of magnitude less than the available energies
shown in Table 1.

Force. Consider the extreme case of a grinding wheel which
disintegrates into a frictionless fluid which enters and leaves the
guard at the same velocity as illustrated in Fig. 6. Here, the guard
acts as a fixed vane with the same kinetic energy entering the
guard as leaving it. The time rate of change of momentum of the
grinding wheel particles rotating around the guard gives rise to a
force Qf which impinges on the guard skirt. The standard fluid
mechanics formula for Qf is (9):

Qf = 2
γ
g







∆o V 2 ≈ WRω2

πg (17)

This equation is used to develop Table 2 where Qf  is tabulated for
the same grinding wheel considered in Table 1. The forces in
Table 2 can be compared to the frictional resisting forces computed
for the extended and retracted upper grinding wheel guard, i.e.,
Q=3,932 N (884 lb) for the extended guard and Q=5,511 N (1,239
lb) for the retracted guard. Clearly, the assumed force environment
will cause the upper guard to rotate to produce a leading edge
displacement greater than 1.27 cm (0.5 in.).

Overspeeding a grinding wheel usually leads to the development
of radial cracks. The two radial cracks shown in Fig. 7 have
released a circular sector of 2β which is assumed to contact the

Figure 6.  Grinding wheel guard as a fixed vane

Figure 7.  Centrifugal force Qs caused by rotating segment

Guard Skirt

V

V

Particle Stream

Q f

Grinding Wheel

Radial Crack

Fragment Sector

Guard Skirt

R

ω
C.G.

Qs 2β

x c

Table 2.  Guard reaction force Qf – fluidized grinding
       wheel particles.

Speed (rpm) Impinging Force, Qf – N (lb)

Working: 6,000 10,173  (2,287)
Proof Test: 9,000 22,886  (5,145)
Typical Fracture: 12,000 40,688  (9,147)

Table 1  Kinetic energy of grinding wheel segments

Kinetic Energy – Nm (lb-ft)

Speed (rpm) ω (rad/s) Full Wheel 1/4 Wheel 1/2 Wheel 2/3 Wheel

Working: 6,000 628 912  (673) 228  (168) 457  (357) 609  (449)
Proof Test: 9,000 942 2,054  (1,515) 514  (379) 1,028  (758) 1,369  (1,010)
Typical Fracture: 12,000 1,257 3,653  (2,694) 914  (674) 1,826  (1,347) 2,435  (1,796)
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guard skirt without friction and to be swept along at a rotational
speed of ω. The center of gravity (C.G.) of the sector is located a
distance xc from its vertex which is also the spindle location.
Equation 18 is a general formula for xc:

xc = 2R sinβ
3β (18)

The centrifugal force Qs developed by the grinding wheel sector
reacts against the guard skirt with a magnitude given by the
standard formula (10):

Qs = mxcω
2 = WRω2

πg







2

3
sinβ = Qf

2

3
sinβ



 (19)

where m is the sector mass and xc is taken from equation 18.
Since 2/3 sinβ is always less than unity, it would appear that the
segment forces Qs are less than the fluidized grinding wheel
forces Qf for the same speed of rotation ω. The sector forces Qs

that impinge on the guard skirt have been tabulated in Table 3 for
the subject grinding wheel for various speeds, sector sizes and
combinations. All of the forces in Table 3 will cause the upper
guard to tilt forward creating a displacement ∆ of the leading
edge of the guard.

STATIC TESTING

Test Setup
In the fully retracted or the fully extended positions, rigid behavior
of the upper guard produces a rotation about bolt lines 2-3 or 1-
4 respectively. It is this pure rotation that dissipates energy
through friction and consequently any method of applying a
tilting couple to the guard is acceptable for studying energy
absorption. Since it was convenient to mount the guard in a
universal testing machine with its spindle axis vertical and since
a vertical concentrated load could be applied at the very portion
of the skirt where we characterize the maximum escape
displacement, we have chosen the test setup illustrated in Fig. 3
where Q is ignored. Recall that the area under a load-deflection

Figure 8. Load–deflection diagram for fully extended upper
guard [Bolts 1 through 4 torqued to 14.1 Nm
(125 lb-in.)]

Figure 9. Load–deflection diagram for fully retracted upper
guard [Bolts 1 through 4 torqued to 14.1 Nm
(125 lb-in.)]
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Typical Fracture: 12,000 23,491  (5,281) 23,491  (5,281) 27,125  (6,098)

Table 3. Guard reaction force Qs – sectors of grinding wheel

Impinging Force, Qs – N (lb)
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diagram P∆ represents the work performed on the guard to bring
it to any displacement ∆ of interest.

Fully Extended Guard Test Results
For the fully extended guard, a load-deflection diagram is shown
in Fig. 8 which illustrates the guard behavior through a
displacement equal to 2.54 cm (1 in.). In the critical displacement
from zero to 1.27 cm (0.5 in.), the maximum recorded load was
1,908 N (429 lb) which can be compared to the predicted load of
1,966 N (442 lb). In the same region, the absorbed energy is 17.5
Nm (155 lb-in.) which is lower than the calculated Uextended equal
to 25.0 Nm (221 lb-in.). The total area under the curve up to ∆
equal to 2.54 cm (1 in.) corresponds to 59.9 Nm (535 lb-in.)
whereas the rough calculations indicated 49.9 Nm (442 lb-in.).

The testing program as characterized by the load-deflection
diagram in Fig. 8 provides a richer understanding of the upper
guard behavior. Elastic behavior analysis can be observed for
displacements up to 7.62 mm (0.3 in.). It is here that the maximum
resistance is achieved which corresponds to static friction. When
∆ is between 7.62 mm (0.3 in.) and 1.02 cm (0.4 in.), the resistance
falls off as the sliding friction is activated at the joints. For
displacements greater the 1.02 cm (0.4 in.), the resistance
hardens because of large displacement effects including binding
of the bolts.

The assumption of rigid-friction behavior used in our analysis
overestimates the absorption capability which involves elastic
behavior. During a fragment storm, our static test results would
indicate that the escape displacement has a very large elastic
component. Indeed, when a wheel is mounted close to the top of
the guard skirt, the elastic displacements alone will produce an
escape geometry for the broken wheel fragments. The rigidity of
even single piece guards must be carefully evaluated to be
certain that their rigidity is sufficient to achieve the protection
required by ANSI.

Fully Retracted Guard Test Results
The load-deflection diagram shown in Fig. 9 describes the
behavior of the upper guard in its fully retracted position. In the
critical displacement region ∆ equal to 1.27 cm (0.5 in.), the
maximum load was measured as 2,273 N (511 lb) which can be
compared to our analytical prediction of 2,860 N (643 lb). Further,
the energy absorbed up to the maximum displacement ∆ equal
to 1.27 cm (0.5 in.) was found to be 20.6 Nm (182 lb-in.) which can
be compared to our prediction of 36.3 Nm (321 lb-in.). In the
critical region up to ∆ equal to 1.27 cm (0.5 in.), elastic behavior

dominates the first 50% of the curve. Once again, elastic behavior
alone produces an escape geometry for wheels mounted close
to the top of the guard skirt. It should be noted that the bolts
utilized in our static testing program were preloaded to a torque
of 14.1 Nm (125 lb-in.) which corresponds to the “as manufactured”
condition associated with the guard. The stochastic nature of
friction leads to very large variations in the preload determinations
F

c. Shigley and Mischke show a range of values from 23.6 kN
(5,305 lb) to 42.7 kN (9,599 lb) when the bolt torque value is held
constant at 90 Nm (797 lb-in.) (4). In view of the large scatter
associated with frictional behavior, it is difficult to justify a refined
analytical investigation of guard behavior.

DYNAMIC WHEEL BREAKAGE TESTING

Test Setup
Referring to the dynamic test setup shown in Fig. 10, the test
wheel was mounted onto a variable speed spindle. The spindle
housing was used to mount the two piece adjustable depressed
center wheel guard described in Fig. 2 in a downward attitude.
The test was conducted with the upper guard in the fully retracted
position which placed the outer surface of the wheel 6.35 mm
(0.25 in.) from the top edge of the upper guard skirt. Using this
configuration, the spindle speed was gradually increased until
the grinding wheel fragmented into four major pieces at 11,500
rpm. The fragments impinged on a cylindrical target located
concentrically with the spindle axis. Fig. 11 maps the imprint of
the fragments on the target where the guarded and unguarded
zones are differentiated.

Figure 10. Dynamic test setup

Figure 11. Dynamic test target
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Test Results
Following the dynamic testing, the following observations were
noted:

1. Major and minor strikes appear on the target in the
guarded zone.

2. Major and minor strikes appear on the target in the
unguarded zone.

3. Major strikes are collinear on the target outside the wheel’s
plane of rotation.

4. Minor strikes on the target exhibit a spray pattern.
5. No plastic deformation of the upper guard with the

exception of small zones in the leading and trailing edges
of the upper skirt.

6. Rigid body rotation α of the upper guard was 10.5 degrees.
All bolt sliding occurred at bolts 1 and 4.

7. Upper guard leading edge deflection ∆ took a permanent
set of 1.59 cm (0.625 in.).

8. Scratches appear on the inside of the upper guard in the
rotational plane of the wheel as depicted in Fig. 12.

9. Secondary breakage of the wheel produced witness marks
toward the mounting side of the guard skirt.

10. Witness marks on the right side of the guard indicate
fragment trajectories into the guarded zone.

11. Witness marks indicate helical trajectories into the guarded
zone.

12. After remounting the dynamic test guard and a new wheel
on its grinder, there is line of sight to the wheel’s plane of
rotation from the 12 o’clock position, i.e., an escape
geometry was established.

CONCLUSIONS

The purpose of the guard is to act as a sentinel against worst case
wheel fragmentation scenarios. The rough calculations which
overestimate the resistance of the guard indicate that the guard
design is hopelessly inadequate. Static testing indicates that the
guard resistance is even lower than predicted and that elastic
deflections alone create an escape geometry in addition to the
rigid body displacements. Based on either the rough calculations
or the static testing, it is no surprise that the dynamic test
decisively establishes the inadequacy of this two piece depressed
center wheel guard. In spite of the fact that the tilting guard will
shed fragments with their associated kinetic energy, the available
forces and energies are so high that the guard achieved its
maximum tilt angle which was restricted by large displacement
binding of the bolts.

If multiple dynamic tests are performed, each will produce
failures at different speeds and different fragmentation modes
due to primary and secondary fractures. It should be noted that
the clearance between the periphery of a new wheel and the
inside of the guard skirt is only 6.35 mm (0.25 in.). Any fragments
wedged or jammed in this space that inhibit wheel particles from
exiting the guard will produce impacts with their associated
forces and impulses that will act on the skirt. Because of the high
energies available in grinding wheels at both working and fracturing
speeds, very large reaction forces may be experienced by the skirt.

The results of our analysis, static testing, and dynamic testing all
suggest that dynamic testing evaluation is essential for all

Figure 12.  Scratches on upper guard after dynamic wheel
        breakage testing
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adjustable two piece guards including depressed center and cup
wheel guards. Both classes of adjustable two piece guards
provide a rigid body escape geometry in addition to the
displacements caused by deflection, yielding, and fracturing that
may take place in a guarding system. Finally, our results indicate
that targets must be used to establish the performance capability
of guards which may fail elastically by permitting escape
deflections. Without the target, one can draw false conclusions
based on the lack of permanent displacements or distortions of
the guard structure. For example, a rubber guard would appear
unscathed during a grinding wheel excursion even though
fragments were fully penetrating the guarded zone.
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